
The biblatex Package
Programmable Bibliographies and Citations

Philipp Lehman
plehman@gmx.net

Version 1.6
July 29, 2011

Contents

1 Introduction 1
1.1 About 1
1.2 License 2
1.3 Feedback 2
1.4 Acknowledgments . . . 2
1.5 Prerequisites 2

2 Database Guide 5
2.1 Entry Types 6
2.2 Entry Fields 12
2.3 Usage Notes 28
2.4 Hints and Caveats . . . 35

3 User Guide 43
3.1 Package Options 43
3.2 Global Customization . 60
3.3 Standard Styles 61
3.4 Sorting Options 67
3.5 Bibliography Commands 68
3.6 Citation Commands . . 79
3.7 Localization Commands 88
3.8 Formatting Commands . 90
3.9 Language notes 97

3.10 Usage Notes 98
3.11 Hints and Caveats . . . 108

4 Author Guide 114
4.1 Overview 114
4.2 Bibliography Styles . . . 117
4.3 Citation Styles 128
4.4 Data Interface 131
4.5 Customization 138
4.6 Auxiliary Commands . . 144
4.7 Punctuation 163
4.8 Localization Strings . . 169
4.9 Localization Modules . 170
4.10 Formatting Commands . 182
4.11 Hints and Caveats . . . 192

Appendix 207
a Default crossref Setup . . . 207
b Default Sorting Schemes . . 209

b1 Alphabetic 1 209
b2 Alphabetic 2 209
b3 Chronological 210

c Revision History 210

List of Tables

1 Supported Languages 24
2 Date Specifications 33
3 Capacity of bibtex8 37
4 Supported Languages 46

5 mcite-like commands 88
6 mcite-like syntax 89
7 Date Interface 126
8 \mkcomprange setup 159

1 Introduction

This document is a systematic reference manual for the biblatex package. Look
at the sample documents which ship with biblatex to get a first impression.1 For
a quick start guide, browse §§ 1.1, 2.1, 2.2, 2.3, 3.1, 3.3, 3.5, 3.6, 3.10.

1.1 About biblatex

This package provides advanced bibliographic facilities for use with LaTeX in con-
junction with BibTeX. The package is a complete reimplementation of the biblio-

1 \biblatexctan/doc/examples

1

http://sourceforge.net/projects/biblatex/
mailto:plehman@gmx.net
http://www.ctan.org/tex-archive/macros/latex/contrib/biblatex//doc/examples

graphic facilities provided by LaTeX. It redesigns the way in which LaTeX interacts
with BibTeX at a fairly fundamental level. With biblatex, BibTeX is only used to
sort the bibliography and to generate labels. Instead of being implemented in bst
files, the formatting of the bibliography is entirely controlled by LaTeX macros,
hence the name biblatex. Good working knowledge in LaTeX should be suYcient
to design new bibliography and citation styles. There is no need to learn BibTeX’s
postfix stack language. This package also supports subdivided bibliographies, mul-
tiple bibliographies within one document, and separate lists of bibliographic short-
hands. Bibliographies may be subdivided into parts and/or segmented by topics.
Just like the bibliography styles, all citation commands may be freely defined. The
package is completely localized and can interface with the babel package. Please
refer to table 1 for a list of languages currently supported by this package.

1.2 License

Copyright © 2006–2011 Philipp Lehman. Permission is granted to copy, distribute
and/or modify this software under the terms of the LaTeX Project Public License,
version 1.3.1 This package is author-maintained.

1.3 Feedback

Please use the biblatex project page on SourceForge to report bugs and submit
feature requests.2 There are two trackers on this page: Bugs for bug reports and
Features for feature requests.3 Select a tracker, then click on ‘Add new’ to submit
your report or request. I may consider implementing a new feature if the request is
reasonable, seems to be relevant to a considerable number of users, and complies
with the architecture and philosophy of biblatex. Before making a feature request,
please ensure that you have thoroughly studied this manual. If you do not want to
report a bug or request a feature but are simply in need of assistance, you might
want to consider posting your question on the comp.text.tex newsgroup. I can
not provide end-user support by email or via the project page.

1.4 Acknowledgments

The language modules of this package include contributions by the following con-
tributors (in the order of submission): Ignacio Fernández Galván (Spanish), Enrico
Gregorio (Italian), Johannes Wilm (Danish/Norwegian), Per Starbäck, Carl-Gustav
Werner, Filip Åsblom (Swedish), Augusto Ritter StoVel (Brazilian), Alexander van
Loon (Dutch), Apostolos Syropoulos (Greek), Hannu Väisänen (Finnish), Prokopis
(Greek), Mateus Araújo (Brazilian), Andrea Marchitelli (Italian), José Carlos San-
tos (Portuguese).

1.5 Prerequisites

This section gives an overview of all resources required by this package and dis-
cusses compatibility issues.

1 http://www.ctan.org/tex-archive/macros/latex/base/lppl.txt
2 http://sourceforge.net/projects/biblatex/
3 http://sourceforge.net/tracker2/?group_id=244752

2

http://www.ctan.org/tex-archive/macros/latex/base/lppl.txt
http://sourceforge.net/projects/biblatex/
http://sourceforge.net/tracker2/?group_id=244752

1.5.1 Requirements

The resources listed in this section are strictly required for biblatex to function.
The package will not work if they are not available.

e-TeX The biblatex package requires e-TeX. TeX distributions have been shipping e-TeX
binaries for quite some time, the popular distributions use them by default these
days. The biblatex package checks if it is running under e-TeX. Simply try com-
piling your documents as you usually do, the chances are that it just works. If you
get an error message, try compiling the document with elatex instead of latex
or pdfelatex instead of pdflatex, respectively.

BibTeX By default, the biblatex package uses BibTeX as a database backend. While a
legacy BibTeX binary is suYcient to run biblatex, using bibtex8 is recommended.
If your TeX distribution does not ship with bibtex8, you can get it from ctan.1

Biber Biber is the next-generation backend of biblatex. You only need one backend,
either BibTeX or Biber. Biber is available from SourceForge.2

etoolbox This LaTeX package, which is loaded automatically, provides generic programming
facilities required by biblatex. It is available from ctan.3

logreq This LaTeX package, which is also loaded automatically, provides a frontend for
writing machine-readable messages to an auxiliary log file. It is available from
ctan.4

Apart from the above resources, biblatex also requires the standard LaTeX pack-
ages keyval and ifthen as well as the url package. These package are included
in all common TeX distributions and will be loaded automatically.

1.5.2 Recommended Packages

The packages listed in this section are not required for biblatex to function, but
they provide recommended additional functions or enhance existing features. The
package loading order does not matter.

babel The babel package provides the core architecture for multilingual typesetting. If
you are writing in a language other than American English, using this package is
strongly recommended. If loaded, biblatex package will detect babel automati-
cally.

csquotes If this package is available, biblatex will use its language sensitive quotation
facilities to enclose certain titles in quotation marks. If not, biblatex uses quotes
suitable for American English as a fallback. When writing in any other language,
loading csquotes is strongly recommended.5

1 http://www.ctan.org/tex-archive/biblio/bibtex/8-bit/
2 http://biblatex-biber.sourceforge.net/
3 http://www.ctan.org/tex-archive/macros/latex/contrib/etoolbox/
4 http://www.ctan.org/tex-archive/macros/latex/contrib/logreq/
5 http://www.ctan.org/tex-archive/macros/latex/contrib/csquotes/

3

http://www.ctan.org/tex-archive/biblio/bibtex/8-bit/
http://biblatex-biber.sourceforge.net/
http://www.ctan.org/tex-archive/macros/latex/contrib/etoolbox/
http://www.ctan.org/tex-archive/macros/latex/contrib/logreq/
http://www.ctan.org/tex-archive/macros/latex/contrib/csquotes/

1.5.3 Compatible Classes and Packages

The biblatex package provides dedicated compatibility code for the classes and
packages listed in this section.

hyperref The hyperref package transforms citations into hyperlinks. See the hyperref and
backref package options in § 3.1.2.1 for further details. When using the hyperref
package, it is preferable to load it after biblatex.

showkeys The showkeys package prints the internal keys of, among other things, citations in
the text and items in the bibliography. The package loading order does not matter.

memoir When using the memoir class, the default bibliography headings are adapted such
that they blend well with the default layout of this class. See § 3.11.2 for further
usage hints.

KOMA-Script When using any of the scrartcl, scrbook, or scrreprt classes, the default biblio-
graphy headings are adapted such that they blend with the default layout of these
classes. See § 3.11.1 for further usage hints.

1.5.4 Incompatible Packages

The packages listed in this section are not compatible with biblatex. Since it
reimplements the bibliographic facilities of LaTeX from the ground up, biblatex
naturally conflicts with all packages modifying the same facilities. This is not spe-
cific to biblatex. Some of the packages listed below are also incompatible with
each other for the same reason.

babelbib The babelbib package provides support for multilingual bibliographies. This is a
standard feature of biblatex. Use the hyphenation field and the package option
babel for similar functionality. Note that biblatex automatically adjusts to the
main document language if babel is loaded. You only need the above mentioned
features if you want to switch languages on a per-entry basis within the bibliogra-
phy. See §§ 2.2.3 and 3.1.2.1 for details. Also see § 3.7.

backref The backref package creates back references in the bibliography. See the package
options hyperref and backref in § 3.1.2.1 for comparable functionality.

bibtopic The bibtopic package provides support for bibliographies subdivided by topic,
type, or other criteria. For bibliographies subdivided by topic, see the category
feature in § 3.5.6 and the corresponding filters in § 3.5.2. Alternatively, you may
use the keywords field in conjunction with the keyword and notkeyword filters for
comparable functionality, see §§ 2.2.3 and 3.5.2 for details. For bibliographies sub-
divided by type, use the type and nottype filters. Also see § 3.10.4 for examples.

bibunits The bibunits package provides support for multiple partial (e. g., per chapter)
bibliographies. See chapterbib.

chapterbib The chapterbib package provides support for multiple partial bibliographies. Use
the refsection environment and the section filter for comparable functionality.
Alternatively, you might also want to use the refsegment environment and the
segment filter. See §§ 3.5.4, 3.5.5, 3.5.2 for details. Also see § 3.10.3 for examples.

4

cite The cite package automatically sorts numeric citations and can compress a list of
consecutive numbers to a range. It also makes the punctuation used in citations
configurable. For sorted and compressed numeric citations, see the sortcites
package option in § 3.1.2.1 and the numeric-comp citation style in § 3.3.1. For
configurable punctuation, see § 3.8.

citeref Another package for creating back references in the bibliography. See backref.

inlinebib The inlinebib package is designed for traditional citations given in footnotes. For
comparable functionality, see the verbose citation styles in § 3.3.1.

jurabib Originally designed for citations in law studies and (mostly German) judicial doc-
uments, the jurabib package also provides features aimed at users in the humani-
ties. In terms of the features provided, there are some similarities between jurabib
and biblatex but the approaches taken by both packages are quite diVerent. Since
both jurabib and biblatex are full-featured packages, the list of similarities and
diVerences is too long to be discussed here.

mcite The mcite package provides support for grouped citations, i. e., multiple items can
be cited as a single reference and listed as a single block in the bibliography. The
citation groups are defined as the items are cited. This only works with unsorted
bibliographies. The biblatex package also supports grouped citations, which are
called ‘entry sets’ or ‘reference sets’ in this manual. See §§ 3.10.5, 3.5.10, 3.6.10 for
details.

mciteplus A significantly enhanced reimplementation of the mcite package which supports
grouping in sorted bibliographies. See mcite.

multibib The multibib package provides support for bibliographies subdivided by topic or
other criteria. See bibtopic.

natbib The natbib package supports numeric and author-year citation schemes, incorpo-
rating sorting and compression code found in the cite package. It also provides
additional citation commands and several configuration options. See the numeric
and author-year citation styles and their variants in § 3.3.1, the sortcites pack-
age option in § 3.1.2.1, the citation commands in § 3.6, and the facilities discussed
in §§ 3.5.7, 3.5.8, 3.8 for comparable functionality. Also see § 3.6.9.

splitbib The splitbib package provides support for bibliographies subdivided by topic.
See bibtopic.

ucs The ucs package provides support for utf-8 encoded input. Either use inputenc’s
standard utf8 module or a Unicode enabled engine such as XeTeX or LuaTeX in-
stead.

2 Database Guide

This part of the manual documents the BibTeX interface of this package. Note
that you can not use biblatex in conjunction with arbitrary bst files because the
package depends on a special BibTeX interface.

5

2.1 Entry Types

This section gives an overview of the entry types supported by biblatex along
with the fields supported by each type.

2.1.1 Regular Types

The lists below indicate the fields supported by each entry type. Note that the
mapping of fields to an entry type is ultimately at the discretion of the bibliogra-
phy style. The lists below therefore serve two purposes. They indicate the fields
supported by the standard styles which ship with this package and they also serve
as a model for custom styles. Note that the ‘required’ fields are not strictly required
in all cases, see § 2.3.2 for details. The fields marked as ‘optional’ are optional in a
technical sense. Bibliographical formatting rules usually require more than just the
‘required’ fields. The standard styles will generally not perform any formal validity
checks, but custom styles may do so. Generic fields like abstract and annotation
or label and shorthand are not included in the lists below because they are in-
dependent of the entry type. The special fields discussed in § 2.2.3, which are also
independent of the entry type, are not included in the lists either.

article An article in a journal, magazine, newspaper, or other periodical which forms a
self-contained unit with its own title. The title of the periodical is given in the
journaltitle field. If the issue has its own title in addition to the main title of
the periodical, it goes in the issuetitle field. Note that editor and related fields
refer to the journal while translator and related fields refer to the article.

Required fields: author, title, journaltitle, year/date

Optional fields: translator, annotator, commentator, subtitle, titleaddon,
editor, editora, editorb, editorc, journalsubtitle, issuetitle,
issuesubtitle, language, origlanguage, series, volume, number, eid, issue,
month, pages, version, note, issn, addendum, pubstate, doi, eprint,
eprintclass, eprinttype, url, urldate

book A single-volume book with one or more authors where the authors share credit for
the work as a whole. This entry type also covers the function of the @inbook type
of traditional BibTeX, see § 2.3.1 for details.

Required fields: author, title, year/date

Optional fields: editor, editora, editorb, editorc, translator, annotator,
commentator, introduction, foreword, afterword, subtitle, titleaddon,
maintitle, mainsubtitle, maintitleaddon, language, origlanguage, volume,
part, edition, volumes, series, number, note, publisher, location, isbn,
chapter, pages, pagetotal, addendum, pubstate, doi, eprint, eprintclass,
eprinttype, url, urldate

mvbook A multi-volume @book. For backwards compatibility, multi-volume books are also
supported by the entry type @book. However, it is advisable to make use of the
dedicated entry type @mvbook.

Required fields: author, title, year/date

6

Optional fields: editor, editora, editorb, editorc, translator, annotator,
commentator, introduction, foreword, afterword, subtitle, titleaddon,
language, origlanguage, edition, volumes, series, number, note, publisher,
location, isbn, pagetotal, addendum, pubstate, doi, eprint, eprintclass,
eprinttype, url, urldate

inbook A part of a book which forms a self-contained unit with its own title. Note that the
profile of this entry type is diVerent from standard BibTeX, see § 2.3.1.

Required fields: author, title, booktitle, year/date

Optional fields: bookauthor, editor, editora, editorb, editorc, translator,
annotator, commentator, introduction, foreword, afterword, subtitle,
titleaddon, maintitle, mainsubtitle, maintitleaddon, booksubtitle,
booktitleaddon, language, origlanguage, volume, part, edition, volumes,
series, number, note, publisher, location, isbn, chapter, pages, addendum,
pubstate, doi, eprint, eprintclass, eprinttype, url, urldate

bookinbook This type is similar to @inbook but intended for works originally published as a
stand-alone book. A typical example are books reprinted in the collected works of
an author.

suppbook Supplemental material in a @book. This type is closely related to the @inbook entry
type. While @inbook is primarily intended for a part of a book with its own title
(e. g., a single essay in a collection of essays by the same author), this type is
provided for elements such as prefaces, introductions, forewords, afterwords, etc.
which often have a generic title only. Style guides may require such items to be
formatted diVerently from other @inbook items. The standard styles will treat this
entry type as an alias for @inbook.

booklet A book-like work without a formal publisher or sponsoring institution. Use the
field howpublished to supply publishing information in free format, if applicable.
The field type may be useful as well.

Required fields: author/editor, title, year/date

Optional fields: subtitle, titleaddon, language, howpublished, type, note,
location, chapter, pages, pagetotal, addendum, pubstate, doi, eprint,
eprintclass, eprinttype, url, urldate

collection A single-volume collection with multiple, self-contained contributions by distinct
authors which have their own title. The work as a whole has no overall author but
it will usually have an editor.

Required fields: editor, title, year/date

Optional fields: editora, editorb, editorc, translator, annotator,
commentator, introduction, foreword, afterword, subtitle, titleaddon,
maintitle, mainsubtitle, maintitleaddon, language, origlanguage, volume,
part, edition, volumes, series, number, note, publisher, location, isbn,
chapter, pages, pagetotal, addendum, pubstate, doi, eprint, eprintclass,
eprinttype, url, urldate

7

mvcollection A multi-volume @collection. For backwards compatibility, multi-volume collec-
tions are also supported by the entry type @collection. However, it is advisable
to make use of the dedicated entry type @mvcollection.

Required fields: editor, title, year/date

Optional fields: editora, editorb, editorc, translator, annotator,
commentator, introduction, foreword, afterword, subtitle, titleaddon,
language, origlanguage, edition, volumes, series, number, note, publisher,
location, isbn, pagetotal, addendum, pubstate, doi, eprint, eprintclass,
eprinttype, url, urldate

incollection A contribution to a collection which forms a self-contained unit with a distinct
author and title. The author refers to the title, the editor to the booktitle,
i. e., the title of the collection.

Required fields: author, editor, title, booktitle, year/date

Optional fields: editora, editorb, editorc, translator, annotator,
commentator, introduction, foreword, afterword, subtitle, titleaddon,
maintitle, mainsubtitle, maintitleaddon, booksubtitle, booktitleaddon,
language, origlanguage, volume, part, edition, volumes, series, number,
note, publisher, location, isbn, chapter, pages, addendum, pubstate, doi,
eprint, eprintclass, eprinttype, url, urldate

suppcollection Supplemental material in a @collection. This type is similar to @suppbook but
related to the @collection entry type. The standard styles will treat this entry
type as an alias for @incollection.

manual Technical or other documentation, not necessarily in printed form. The author or
editor is omissible in terms of § 2.3.2.

Required fields: author/editor, title, year/date

Optional fields: subtitle, titleaddon, language, edition, type, series,
number, version, note, organization, publisher, location, isbn, chapter,
pages, pagetotal, addendum, pubstate, doi, eprint, eprintclass,
eprinttype, url, urldate

misc A fallback type for entries which do not fit into any other category. Use the field
howpublished to supply publishing information in free format, if applicable. The
field type may be useful as well. author, editor, and year are omissible in terms
of § 2.3.2.

Required fields: author/editor, title, year/date

Optional fields: subtitle, titleaddon, language, howpublished, type,
version, note, organization, location, date, month, year, addendum,
pubstate, doi, eprint, eprintclass, eprinttype, url, urldate

online An online resource. author, editor, and year are omissible in terms of § 2.3.2.
This entry type is intended for sources such as web sites which are intrinsicly
online resources. Note that all entry types support the url field. For example,

8

when adding an article from an online journal, it may be preferable to use the
@article type and its url field.

Required fields: author/editor, title, year/date, url

Optional fields: subtitle, titleaddon, language, version, note,
organization, date, month, year, addendum, pubstate, urldate

patent A patent or patent request. The number or record token is given in the number
field. Use the type field to specify the type and the location field to indicate the
scope of the patent, if diVerent from the scope implied by the type. Note that the
location field is treated as a key list with this entry type, see § 2.2.1 for details.

Required fields: author, title, number, year/date

Optional fields: holder, subtitle, titleaddon, type, version, location, note,
date, month, year, addendum, pubstate, doi, eprint, eprintclass,
eprinttype, url, urldate

periodical An complete issue of a periodical, such as a special issue of a journal. The title of
the periodical is given in the title field. If the issue has its own title in addition
to the main title of the periodical, it goes in the issuetitle field. The editor is
omissible in terms of § 2.3.2.

Required fields: editor, title, year/date

Optional fields: editora, editorb, editorc, subtitle, issuetitle,
issuesubtitle, language, series, volume, number, issue, date, month, year,
note, issn, addendum, pubstate, doi, eprint, eprintclass, eprinttype, url,
urldate

suppperiodical Supplemental material in a @periodical. This type is similar to @suppbook but re-
lated to the @periodical entry type. The role of this entry type may be more obvi-
ous if you bear in mind that the @article type could also be called @inperiodical.
This type may be useful when referring to items such as regular columns, obitu-
aries, letters to the editor, etc. which only have a generic title. Style guides may
require such items to be formatted diVerently from articles in the strict sense of
the word. The standard styles will treat this entry type as an alias for @article.

proceedings A single-volume conference proceedings. This type is very similar to @collection.
It supports an optional organization field which holds the sponsoring institution.
The editor is omissible in terms of § 2.3.2.

Required fields: editor, title, year/date

Optional fields: subtitle, titleaddon, maintitle, mainsubtitle,
maintitleaddon, eventtitle, eventdate, venue, language, volume, part,
volumes, series, number, note, organization, publisher, location, month,
isbn, chapter, pages, pagetotal, addendum, pubstate, doi, eprint,
eprintclass, eprinttype, url, urldate

mvproceedings A multi-volume @proceedings entry. For backwards compatibility, multi-volume
proceedings are also supported by the entry type @proceedings. However, it is
advisable to make use of the dedicated entry type @mvproceedings

9

Required fields: editor, title, year/date

Optional fields: subtitle, titleaddon, eventtitle, eventdate, venue,
language, volumes, series, number, note, organization, publisher,
location, month, isbn, pagetotal, addendum, pubstate, doi, eprint,
eprintclass, eprinttype, url, urldate

inproceedings An article in a conference proceedings. This type is similar to @incollection. It
supports an optional organization field.

Required fields: author, editor, title, booktitle, year/date

Optional fields: subtitle, titleaddon, maintitle, mainsubtitle,
maintitleaddon, booksubtitle, booktitleaddon, eventtitle, eventdate,
venue, language, volume, part, volumes, series, number, note, organization,
publisher, location, month, isbn, chapter, pages, addendum, pubstate, doi,
eprint, eprintclass, eprinttype, url, urldate

reference A single-volume work of reference such as an encyclopedia or a dictionary. This is
a more specific variant of the generic @collection entry type. The standard styles
will treat this entry type as an alias for @collection.

mvreference A multi-volume @reference entry. The standard styles will treat this entry type as
an alias for @mvcollection. For backwards compatibility, multi-volume references
are also supported by the entry type @reference. However, it is advisable to make
use of the dedicated entry type @mvreference.

inreference An article in a work of reference. This is a more specific variant of the generic
@incollection entry type. The standard styles will treat this entry type as an
alias for @incollection.

report A technical report, research report, or white paper published by a university or
some other institution. Use the type field to specify the type of report. The spon-
soring institution goes in the institution field.

Required fields: author, title, type, institution, year/date

Optional fields: subtitle, titleaddon, language, number, version, note,
location, month, isrn, chapter, pages, pagetotal, addendum, pubstate, doi,
eprint, eprintclass, eprinttype, url, urldate

set An entry set. This entry type is special, see § 3.10.5 for details.

thesis A thesis written for an educational institution to satisfy the requirements for a
degree. Use the type field to specify the type of thesis.

Required fields: author, title, type, institution, year/date

Optional fields: subtitle, titleaddon, language, note, location, month, isbn,
chapter, pages, pagetotal, addendum, pubstate, doi, eprint, eprintclass,
eprinttype, url, urldate

unpublished A work with an author and a title which has not been formally published, such
as a manuscript or the script of a talk. Use the fields howpublished and note to
supply additional information in free format, if applicable.

10

Required fields: author, title, year/date

Optional fields: subtitle, titleaddon, language, howpublished, note,
location, isbn, date, month, year, addendum, pubstate, url, urldate

custom[a–f] Custom types for special bibliography styles. Not used by the standard styles.

2.1.2 Type Aliases

The entry types listed in this section are provided for backwards compatibility
with traditional BibTeX styles. These aliases are resolved by BibTeX as the data is
exported. Bibliography styles will see the entry type the alias points to, not the
alias name. All unknown entry types are generally exported as @misc.

conference A BibTeX legacy alias for @inproceedings.

electronic An alias for @online.

mastersthesis Similar to @thesis except that the type field is optional and defaults to the local-
ized term ‘Master’s thesis’. You may still use the type field to override that.

phdthesis Similar to @thesis except that the type field is optional and defaults to the local-
ized term ‘PhD thesis’. You may still use the type field to override that.

techreport Similar to @report except that the type field is optional and defaults to the local-
ized term ‘technical report’. You may still use the type field to override that.

www An alias for @online, provided for jurabib compatibility.

2.1.3 Unsupported Types

The types in this section are similar to the custom types @custom[a-f], i. e., the
standard bibliography styles provide no support for these types. When using the
standard styles, they will be treated as @misc entries.

artwork Works of the visual arts such as paintings, sculpture, and installations.

audio Audio recordings, typically on audio cd, dvd, audio casette, or similar media. See
also @music.

bibnote This special entry type is not meant to be used in the bib file like other types. It is
provided for third-party packages like notes2bib which merge notes into the bib-
liography. The notes should go into the note field. Be advised that the @bibnote
type is not related to the \defbibnote command in any way. \defbibnote is for
adding comments at the beginning or the end of the bibliography, whereas the
@bibnote type is meant for packages which render endnotes as bibliography en-
tries.

commentary Commentaries which have a status diVerent from regular books, such as legal
commentaries.

image Images, pictures, photographs, and similar media.

jurisdiction Court decisions, court recordings, and similar things.

11

legislation Laws, bills, legislative proposals, and similar things.

legal Legal documents such as treaties.

letter Personal correspondence such as letters, emails, memoranda, etc.

movie Motion pictures. See also @video.

music Musical recordings. This is a more specific variant of @audio.

performance Musical and theatrical performances as well as other works of the performing arts.
This type refers to the event as opposed to a recording, a score, or a printed play.

review Reviews of some other work. This is a more specific variant of the @article type.
The standard styles will treat this entry type as an alias for @article.

software Computer software.

standard National and international standards issued by a standards body such as the Inter-
national Organization for Standardization.

video Audiovisual recordings, typically on dvd, vhs casette, or similar media. See also
@movie.

2.2 Entry Fields

This section gives an overview of the fields supported by biblatex. See § 2.2.1 for
an introduction to the data types supported by this package and §§ 2.2.2 and 2.2.3
for the actual field listings.

2.2.1 Data Types

In bib files all bibliographic data is specified in fields. Some of those fields, for
example author and editor, may contain a list of items. This list structure is
implemented by BibTeX via the keyword ‘and’, which is used to separate the in-
dividual items in the list. The biblatex package implements three distinct data
types to handle bibliographic data: name lists, literal lists, and fields. There are
also several list and field subtypes. This section gives an overview of the data types
supported by this package. See §§ 2.2.2 and 2.2.3 for information about the map-
ping of BibTeX’s fields to biblatex’s data types.

Name lists are parsed and split up into the individual items at the and delimiter.
Each item in the list is then dissected into four name components: the first
name, the name prefix (von, van, of, da, de, della, . . .), the last name, and the
name suYx (junior, senior, . . .). Name lists may be truncated in the bib file
with the keyword ‘and others’. Typical examples of name lists are author and
editor.

Literal lists are parsed and split up into the individual items at the and delimiter
but not dissected further. Literal lists may be truncated in the bib file with the
keyword ‘and others’. There are two subtypes:

Literal lists in the strict sense are handled as described above. The individual

12

items are simply printed as is. Typical examples of such literal lists are
publisher and location.

Key lists are a variant of literal lists which may hold printable data or localiza-
tion keys. For each item in the list, a test is performed to determine whether
it is a known localization key (the localization keys defined by default are
listed in § 4.9.2). If so, the localized string is printed. If not, the item is
printed as is. A typical example of a key list is language.

Fields are usually printed as a whole. There are several subtypes:

Literal fields are printed as is. Typical examples of literal fields are title and
note.

Range fields are literal fields with one special feature: all dashes are normal-
ized and replaced by the command \bibrangedash. Any number of con-
secutive dashes will only yield a single range dash. A typical example of a
range field is the pages field.

Integer fields hold unformatted integers which may be converted to ordinals
or strings as they are printed. A typical example is the month field.

Date fields hold a date specification in yyyy-mm-dd format or a date range in
yyyy-mm-dd/yyyy-mm-dd format. Date fields are special in that the date is
parsed and split up into its components. See § 2.3.8 for details. A typical
example is the date field.

Verbatim fields are processed in verbatim mode and may contain special char-
acters. Typical examples of verbatim fields are url and doi.

Key fields may hold printable data or localization keys. A test is performed to
determine whether the value of the field is a known localization key (the
localization keys defined by default are listed in § 4.9.2). If so, the localized
string is printed. If not, the value is printed as is. A typical example is the
type field.

Special fields are fields which require a special format not mentioned above.
The field description will include details on the required format in this case.
Typical examples are the fields hyphenation, keywords, and gender from
§ 2.2.3.

The data type of a field will usually not change, regardless of the type of entry it
is used in. However, there are a few special cases. The field descriptions in § 2.2.2
include the details or pointers to the relevant sections in this manual in such cases.
For example, the location field, which is a literal list by default, is treated as a
key list when used in @patent entries. The series field, which is a literal field by
default, is handled in a special way when used in @article entries, see § 2.3.7 for
details.

13

2.2.2 Data Fields

The fields listed in this section are the regular ones holding printable data. The
name on the left is the name of the field, as used by both BibTeX and biblatex. The
biblatex data type is given to the right of the name. See § 2.2.1 for explanation
of the various data types.

abstract field (literal)

This field is intended for recording abstracts in a bib file, to be printed by a special
bibliography style. It is not used by all standard bibliography styles.

addendum field (literal)

Miscellaneous bibliographic data to be printed at the end of the entry. This is
similar to the note field except that it is printed at the end of the bibliography
entry.

afterword list (name)

The author(s) of an afterword to the work. If the author of the afterword is iden-
tical to the editor and/or translator, the standard styles will automatically con-
catenate these fields in the bibliography. See also introduction and foreword.

annotation field (literal)

This field may be useful when implementing a style for annotated bibliographies.
It is not used by all standard bibliography styles. Note that this field is completely
unrelated to annotator. The annotator is the author of annotations which are
part of the work cited.

annotator list (name)

The author(s) of annotations to the work. If the annotator is identical to the editor
and/or translator, the standard styles will automatically concatenate these fields
in the bibliography. See also commentator.

author list (name)

The author(s) of the title.

authortype field (key)

The type of author. This field will aVect the string (if any) used to introduce the
author. Not used by the standard bibliography styles.

bookauthor list (name)

The author(s) of the booktitle.

bookpagination field (key)

If the work is published as part of another one, this is the pagination scheme of
the enclosing work, i. e., bookpagination relates to pagination like booktitle to
title. The value of this field will aVect the formatting of the pages and pagetotal

14

fields. The key should be given in the singular form. Possible keys are page, column,
line, verse, section, and paragraph. See also pagination as well as § 2.3.10.

booksubtitle field (literal)

The subtitle related to the booktitle. If the subtitle field refers to a work which
is part of a larger publication, a possible subtitle of the main work is given in this
field. See also subtitle.

booktitle field (literal)

If the title field indicates the title of a work which is part of a larger publication,
the title of the main work is given in this field. See also title.

booktitleaddon field (literal)

An annex to the booktitle, to be printed in a diVerent font.

chapter field (literal)

A chapter or section or any other unit of a work.

commentator list (name)

The author(s) of a commentary to the work. Note that this field is intended for
commented editions which have a commentator in addition to the author. If the
work is a stand-alone commentary, the commentator should be given in the author
field. If the commentator is identical to the editor and/or translator, the stan-
dard styles will automatically concatenate these fields in the bibliography. See also
annotator.

date field (date)

The publication date. See also month and year as well as § 2.3.8.

doi field (verbatim)

The Digital Object Identifier of the work.

edition field (integer or literal)

The edition of a printed publication. This must be an integer, not an ordinal. Don’t
say edition={First} or edition={1st} but edition={1}. The bibliography style
converts this to a language dependent ordinal. It is also possible to give the edition
as a literal string, for example “Third, revised and expanded edition”.

editor list (name)

The editor(s) of the title, booktitle, or maintitle, depending on the entry
type. Use the editortype field to specifiy the role if it is diVerent from ‘editor’.
See § 2.3.6 for further hints.

editora list (name)

A secondary editor performing a diVerent editorial role, such as compiling, redact-

15

ing, etc. Use the editoratype field to specifiy the role. See § 2.3.6 for further
hints.

editorb list (name)

Another secondary editor performing a diVerent role. Use the editorbtype field
to specifiy the role. See § 2.3.6 for further hints.

editorc list (name)

Another secondary editor performing a diVerent role. Use the editorctype field
to specifiy the role. See § 2.3.6 for further hints.

editortype field (key)

The type of editorial role performed by the editor. Roles supported by default are
editor, compiler, founder, continuator, redactor, reviser, collaborator.
The role ‘editor’ is the default. In this case, the field is omissible. See § 2.3.6
for further hints.

editoratype field (key)

Similar to editortype but referring to the editora field. See § 2.3.6 for further
hints.

editorbtype field (key)

Similar to editortype but referring to the editorb field. See § 2.3.6 for further
hints.

editorctype field (key)

Similar to editortype but referring to the editorc field. See § 2.3.6 for further
hints.

eid field (literal)

The electronic identifier of an @article.

eprint field (verbatim)

The electronic identifier of an online publication. This is roughly comparable to a
doi but specific to a certain archive, repository, service, or system. See § 3.10.6 for
details. Also see eprinttype and eprintclass.

eprintclass field (literal)

Additional information related to the resource indicated by the eprinttype field.
This could be a section of an archive, a path indicating a service, a classification of
some sort, etc. See § 3.10.6 for details. Also see eprint and eprinttype.

eprinttype field (literal)

The type of eprint identifier, e. g., the name of the archive, repository, service,
or system the eprint field refers to. See § 3.10.6 for details. Also see eprint and
eprintclass.

16

eventdate field (date)

The date of a conference, a symposium, or some other event in @proceedings and
@inproceedings entries. This field may also be useful for the custom types listed
in § 2.1.3. See also eventtitle and venue as well as § 2.3.8.

eventtitle field (literal)

The title of a conference, a symposium, or some other event in @proceedings and
@inproceedings entries. This field may also be useful for the custom types listed
in § 2.1.3. Note that this field holds the plain title of the event. Things like “Pro-
ceedings of the Fifth XYZ Conference” go into the titleaddon or booktitleaddon
field, respectively. See also eventdate and venue.

file field (verbatim)

A local link to a pdf or other version of the work. Not used by the standard biblio-
graphy styles.

foreword list (name)

The author(s) of a foreword to the work. If the author of the foreword is identical
to the editor and/or translator, the standard styles will automatically concate-
nate these fields in the bibliography. See also introduction and afterword.

holder list (name)

The holder(s) of a @patent, if diVerent from the author. Not that corporate hold-
ers need to be wrapped in an additional set of braces, see § 2.3.3 for details. This
list may also be useful for the custom types listed in § 2.1.3.

howpublished field (literal)

A publication notice for unusual publications which do not fit into any of the com-
mon categories.

indextitle field (literal)

A title to use for indexing instead of the regular title field. This field may be
useful if you have an entry with a title like “An Introduction to . . . ” and want
that indexed as “Introduction to . . . , An”. Style authors should note that biblatex
automatically copies the value of the title field to indextitle if the latter field
is undefined.

institution list (literal)

The name of a university or some other institution, depending on the entry type.
Traditional BibTeX uses the field name school for theses, which is supported as an
alias. See also §§ 2.2.5 and 2.3.4.

introduction list (name)

The author(s) of an introduction to the work. If the author of the introduction is

17

identical to the editor and/or translator, the standard styles will automatically
concatenate these fields in the bibliography. See also foreword and afterword.

isan field (literal)

The International Standard Audiovisual Number of an audiovisual work. Not used
by the standard bibliography styles.

isbn field (literal)

The International Standard Book Number of a book.

ismn field (literal)

The International Standard Music Number for printed music such as musical scores.
Not used by the standard bibliography styles.

isrn field (literal)

The International Standard Technical Report Number of a technical report.

issn field (literal)

The International Standard Serial Number of a periodical.

issue field (literal)

The issue of a journal. This field is intended for journals whose individual issues
are identified by a designation such as ‘Spring’ or ‘Summer’ rather than the month
or a number. Since the placement of issue is similar to month and number, this
field may also be useful with double issues and other special cases. See also month,
number, and § 2.3.9.

issuesubtitle field (literal)

The subtitle of a specific issue of a journal or other periodical.

issuetitle field (literal)

The title of a specific issue of a journal or other periodical.

iswc field (literal)

The International Standard Work Code of a musical work. Not used by the standard
bibliography styles.

journalsubtitle field (literal)

The subtitle of a journal, a newspaper, or some other periodical.

journaltitle field (literal)

The name of a journal, a newspaper, or some other periodical.

label field (literal)

A designation to be used by the citation style as a substitute for the regular label if
any data required to generate the regular label is missing. For example, when an

18

author-year citation style is generating a citation for an entry which is missing the
author or the year, it may fall back to label. See § 2.3.2 for details. Note that, in
contrast to shorthand, label is only used as a fallback. See also shorthand.

language list (key)

The language(s) of the work. Languages may be specified literally or as local-
ization keys. If localization keys are used, the prefix lang is omissible. See also
origlanguage and compare hyphenation in § 2.2.3.

library field (literal)

This field may be useful to record information such as a library name and a call
number. This may be printed by a special bibliography style if desired. Not used by
the standard bibliography styles.

location list (literal)

The place(s) of publication, i. e., the location of the publisher or institution,
depending on the entry type. Traditional BibTeX uses the field name address,
which is supported as an alias. See also §§ 2.2.5 and 2.3.4. With @patent entries,
this list indicates the scope of a patent and is treated as a key list. This list may
also be useful for the custom types listed in § 2.1.3.

mainsubtitle field (literal)

The subtitle related to the maintitle. See also subtitle.

maintitle field (literal)

The main title of a multi-volume book, such as Collected Works. If the title or
booktitle field indicates the title of a single volume which is part of multi-volume
book, the title of the complete work is given in this field.

maintitleaddon field (literal)

An annex to the maintitle, to be printed in a diVerent font.

month field (integer)

The publication month. This must be an integer, not an ordinal or a string. Don’t
say month={January} but month={1}. The bibliography style converts this to a
language dependent string or ordinal where required. See also date as well as
§§ 2.3.9 and 2.3.8.

nameaddon field (literal)

An addon to be printed immediately after the author name in the bibliography.
Not used by the standard bibliography styles. This field may be useful to add an
alias or pen name (or give the real name if the pseudonym is commonly used to
refer to that author).

note field (literal)

Miscellaneous bibliographic data which does not fit into any other field. The note

19

field may be used to record bibliographic data in a free format. Publication facts
such as “Reprint of the edition London 1831” are typical candidates for the note
field. See also addendum.

number field (literal)

The number of a journal or the volume/number of a book in a series. See also
issue as well as §§ 2.3.7 and 2.3.9. With @patent entries, this is the number or
record token of a patent or patent request.

organization list (literal)

The organization(s) that published a @manual or an @online resource, or spon-
sored a conference. See also § 2.3.4.

origdate field (date)

If the work is a translation, a reprint, or something similar, the publication date of
the original edition. Not used by the standard bibliography styles. See also date.

origlanguage field (key)

If the work is a translation, the language of the original work. See also language.

origlocation list (literal)

If the work is a translation, a reprint, or something similar, the location of the
original edition. Not used by the standard bibliography styles. See also location
and § 2.3.4.

origpublisher list (literal)

If the work is a translation, a reprint, or something similar, the publisher of the
original edition. Not used by the standard bibliography styles. See also publisher
and § 2.3.4.

origtitle field (literal)

If the work is a translation, the title of the original work. Not used by the stan-
dard bibliography styles. See also title.

pages field (range)

One or more page numbers or page ranges. If the work is published as part of
another one, such as an article in a journal or a collection, this field holds the
relevant page range in that other work. It may also be used to limit the reference
to a specific part of a work (a chapter in a book, for example).

pagetotal field (literal)

The total number of pages of the work.

pagination field (key)

The pagination of the work. The value of this field will aVect the formatting the
〈postnote〉 argument to a citation command. The key should be given in the singu-

20

lar form. Possible keys are page, column, line, verse, section, and paragraph.
See also bookpagination as well as §§ 2.3.10 and 3.11.3.

part field (literal)

The number of a partial volume. This field applies to books only, not to journals. It
may be used when a logical volume consists of two or more physical ones. In this
case the number of the logical volume goes in the volume field and the number of
the part of that volume in the part field. See also volume.

publisher list (literal)

The name(s) of the publisher(s). See also § 2.3.4.

pubstate field (key)

The publication state of the work, e. g.,‘in press’. See § 4.9.2.11 for known publica-
tion states.

reprinttitle field (literal)

The title of a reprint of the work. Not used by the standard styles.

series field (literal)

The name of a publication series, such as “Studies in . . . ”, or the number of a
journal series. Books in a publication series are usually numbered. The number or
volume of a book in a series is given in the number field. Note that the @article
entry type makes use of the series field as well, but handles it in a special way.
See § 2.3.7 for details.

shortauthor list (name)

The author(s) of the work, given in an abbreviated form. This field is mainly in-
tended for abbreviated forms of corporate authors, see § 2.3.3 for details.

shorteditor list (name)

The editor(s) of the work, given in an abbreviated form. This field is mainly in-
tended for abbreviated forms of corporate editors, see § 2.3.3 for details.

shorthand field (literal)

A special designation to be used by the citation style instead of the usual label.
This field is intended for citation aliasing. If defined, it overrides the default la-
bel. If any of the cited bibliography entries includes a shorthand field, biblatex
automatically builds a list of shorthands which may be printed in addition to the
regular bibliography; see § 3.5.3 for details. See also label.

shorthandintro field (literal)

The verbose citation styles which comes with this package use a phrase like “hence-
forth cited as [shorthand]” to introduce shorthands on the first citation. If the
shorthandintro field is defined, it overrides the standard phrase. Note that the
alternative phrase must include the shorthand.

21

shortjournal field (literal)

A short version or an acronym of the journaltitle. Not used by the standard
bibliography styles.

shortseries field (literal)

A short version or an acronym of the series field. Not used by the standard bib-
liography styles.

shorttitle field (literal)

The title in an abridged form. This field is usually not included in the bibliography.
It is intended for citations in author-title format. If present, the author-title citation
styles use this field instead of title.

subtitle field (literal)

The subtitle of the work.

title field (literal)

The title of the work.

titleaddon field (literal)

An annex to the title, to be printed in a diVerent font.

translator list (name)

The translator(s) of the title or booktitle, depending on the entry type. If the
translator is identical to the editor, the standard styles will automatically concate-
nate these fields in the bibliography.

type field (key)

The type of a manual, patent, report, or thesis. This field may also be useful for
the custom types listed in § 2.1.3.

url field (verbatim)

The url of an online publication.

urldate field (date)

The access date of the address specified in the url field. See also § 2.3.8.

venue field (literal)

The location of a conference, a symposium, or some other event in @proceedings
and @inproceedings entries. This field may also be useful for the custom types
listed in § 2.1.3. Note that the location list holds the place of publication. It there-
fore corresponds to the publisher and institution lists. The location of the
event is given in the venue field. See also eventdate and eventtitle.

22

version field (literal)

The revision number of a piece of software, a manual, etc.

volume field (literal)

The volume of a multi-volume book or a periodical. See also part.

volumes field (literal)

The total number of volumes of a multi-volume work. Depending on the entry type,
this field refers to title or maintitle.

year field (literal)

The year of publication. See also date and § 2.3.8.

2.2.3 Special Fields

The fields listed in this section do not hold printable data but serve a diVerent
purpose. They apply to all entry types.

crossref field (entry key)

This field holds an entry key for the cross-referencing feature. Child entries with a
crossref field inherit data from the parent entry specified in the crossref field.
If the number of child entries referencing a specific parent entry hits a certain
threshold, the parent entry is automatically added to the bibliography even if it
has not been cited explicitly. The threshold is settable with the mincrossrefs
package option from § 3.1.2.1. Style authors should note that whether or not the
crossref fields of the child entries are defined on the biblatex level depends on
the availability of the parent entry. If the parent entry is available, the crossref
fields of the child entries will be defined. If not, the child entries still inherit the
data from the parent entry but their crossref fields will be undefined. Whether
the parent entry is added to the bibliography implicitly because of the threshold
or explicitly because it has been cited does not matter. See also the xref field in
this section as well as § 2.4.1.

entryset field (comma-separated values)

This field is specific to entry sets. See § 3.10.5 for details.

entrysubtype field (identifier)

This field, which is not used by the standard styles, may be used to specify a sub-
type of an entry type. This may be useful for bibliography styles which support a
finer-grained set of entry types.

execute field (code)

A special field which holds arbitrary TeX code to be executed whenever the data of
the respective entry is accessed. This may be useful to handle special cases. Concep-
tually, this field is comparable to the hooks \AtEveryBibitem, \AtEveryLositem,
and \AtEveryCitekey from § 4.10.6, except that it is definable on a per-entry basis

23

Language Region/Dialect Babel Identifiers

Danish Denmark danish
Dutch Netherlands dutch
English USA american, USenglish, english

United Kingdom british, UKenglish
Canada canadian
Australia australian
New Zealand newzealand

Finnish Finland finnish
French France, Canada french, francais, canadien
German Germany german, ngerman

Austria austrian, naustrian
Greek Greece greek
Italian Italy italian
Norwegian Norway norsk, nynorsk
Portuguese Brazil brazil

Portugal portuges
Spanish Spain spanish
Swedish Sweden swedish

Table 1: Supported Languages

in the bib file. Any code in this field is executed automatically immediately after
these hooks.

gender field (sf, sm, sn, pf, pm, pn, pp)

The gender of the author or the gender of the editor, if there is no author. The
following identifiers are supported: sf (feminine singular, a single female name),
sm (masculine singular, a single male name), sn (neuter singular, a single neuter
name), pf (feminine plural, a list of female names), pm (masculine plural, a list
of male names), pn (neuter plural, a list of neuter names), pp (plural, a mixed
gender list of names). This information is only required by special bibliography
and citation styles and only in certain languages. For example, a citation style may
replace recurrent author names with a term such as ‘idem’. If the Latin word is
used, as is custom in English and French, there is no need to specify the gender. In
German publications, however, such key terms are usually given in German and in
this case they are gender-sensitive.

hyphenation field (identifier)

The language of the bibliography entry. The identifier must be a language name
known to the babel package. This information may be used to switch hyphenation
patterns and localize strings in the bibliography. Note that the language names
are case sensitive. The languages currently supported by this package are given in
table 1. Note that babel treats the identifier english as an alias for british or
american, depending on the babel version. The biblatex package always treats it
as an alias for american. It is preferable to use the language identifiers american
and british to avoid any possible confusion. Compare language in § 2.2.2.

24

indexsorttitle field (literal)

The title used when sorting the index. In contrast to indextitle, this field is used
for sorting only. The printed title in the index is the indextitle or the title field.
This field may be useful if the title contains special characters or commands which
interfere with the sorting of the index. Consider this example:

title = {The \LaTeX\ Companion},
indextitle = {\LaTeX\ Companion, The},
indexsorttitle = {LATEX Companion},

Style authors should note that biblatex automatically copies the value of either
the indextitle or the title field to indexsorttitle if the latter field is unde-
fined.

keywords field (comma-separated values)

A comma-separated list of keywords. These keywords are intended for the biblio-
graphy filters (see §§ 3.5.2 and 3.10.4), they are usually not printed. Note that
spaces after commas are ignored.

options field (comma-separated 〈key〉=〈value〉 options)

A comma-separated list of entry options in 〈key〉=〈value〉 notation. This field is
used to set options on a per-entry basis. See § 3.1.3 for details. Note that citation
and bibliography styles may define additional entry options.

presort field (string)

A special field used to modify the sorting order of the bibliography. This field is
the first item the sorting routine considers when sorting the bibliography, hence
it may be used to arrange the entries in groups. This may be useful when creat-
ing subdivided bibliographies with the bibliography filters. This field is only used
internally during sorting. Please refer to § 3.4 for further details. Also see § 4.5.1.

sortkey field (literal)

A field used to modify the sorting order of the bibliography. Think of this field as
the master sort key. If present, biblatex uses this field during sorting and ignores
everything else, except for the presort field. This field is only used internally
during sorting. Please refer to § 3.4 for further details.

sortname list (name)

A name or a list of names used to modify the sorting order of the bibliography. If
present, this list is used instead of author or editor when sorting the bibliography.
It is only used internally during sorting. Please refer to § 3.4 for further details.

sortshorthand field (literal) Biber only

Similar to sortkey but used in the list of shorthands. If present, biblatex uses
this field instead of shorthand when sorting the list of shorthands. This is useful

25

if the shorthand field holds shorthands with formatting commands such as \emph
or \textbf. This field is only used internally during sorting.

sorttitle field (literal)

A field used to modify the sorting order of the bibliography. If present, this field
is used instead of the title field when sorting the bibliography. It is only used
internally during sorting. The sorttitle field may come in handy if you have an
entry with a title like “An Introduction to. . . ” and want that alphabetized under ‘I’
rather than ‘A’. In this case, you could put “Introduction to. . . ” in the sorttitle
field. Please refer to § 3.4 for further details.

sortyear field (literal)

A field used to modify the sorting order of the bibliography. If present, this field
is used instead of the year field when sorting the bibliography. It is only used
internally during sorting. Please refer to § 3.4 for further details.

xref field (entry key)

This field is an alternative cross-referencing mechanism. It diVers from crossref
in that the child entry will not inherit any data from the parent entry specified
in the xref field. If the number of child entries referencing a specific parent en-
try hits a certain threshold, the parent entry is automatically added to the bib-
liography even if it has not been cited explicitly. The threshold is settable with
the mincrossrefs package option from § 3.1.2.1. Style authors should note that
whether or not the xref fields of the child entries are defined on the biblatex
level depends on the availability of the parent entry. If the parent entry is avail-
able, the xref fields of the child entries will be defined. If not, their xref fields
will be undefined. Whether the parent entry is added to the bibliography implic-
itly because of the threshold or explicitly because it has been cited does not matter.
See also the crossref field in this section as well as § 2.4.1.

2.2.4 Custom Fields

The fields listed in this section are intended for special bibliography styles. They
are not used by the standard bibliography styles.

name[a–c] list (name)

Custom lists for special bibliography styles. Not used by the standard bibliography
styles.

name[a–c]type field (key)

Similar to authortype and editortype but referring to the fields name[a-c]. Not
used by the standard bibliography styles.

list[a–f] list (literal)

Custom lists for special bibliography styles. Not used by the standard bibliography
styles.

26

user[a–f] field (literal)

Custom fields for special bibliography styles. Not used by the standard bibliography
styles.

verb[a–c] field (literal)

Similar to the custom fields above except that these are verbatim fields. Not used
by the standard bibliography styles.

2.2.5 Field Aliases

The aliases listed in this section are provided for backwards compatibility with tra-
ditional BibTeX and other applications based on traditional BibTeX styles. Note that
these aliases are immediately resolved as the bib file is processed. All bibliography
and citation styles must use the names of the fields they point to, not the alias. In
bib files, you may use either the alias or the field name but not both at the same
time.

address list (literal)

An alias for location, provided for BibTeX compatibility. Traditional BibTeX uses
the slightly misleading field name address for the place of publication, i. e., the
location of the publisher, while biblatex uses the generic field name location.
See §§ 2.2.2 and 2.3.4.

annote field (literal)

An alias for annotation, provided for jurabib compatibility. See § 2.2.2.

archiveprefix field (literal)

An alias for eprinttype, provided for arXiv compatibility. See §§ 2.2.2 and 3.10.6.

journal field (literal)

An alias for journaltitle, provided for BibTeX compatibility. See § 2.2.2.

key field (literal)

An alias for sortkey, provided for BibTeX compatibility. See § 2.2.3.

pdf field (verbatim)

An alias for file, provided for JabRef compatibility. See § 2.2.2.

primaryclass field (literal)

An alias for eprintclass, provided for arXiv compatibility. See §§ 2.2.2 and 3.10.6.

school list (literal)

An alias for institution, provided for BibTeX compatibility. The institution
field is used by traditional BibTeX for technical reports whereas the school field
holds the institution associated with theses. The biblatex package employs the
generic field name institution in both cases. See §§ 2.2.2 and 2.3.4.

27

2.3 Usage Notes

The entry types and fields supported by this package should for the most part be
intuitive to use for anyone familiar with BibTeX. However, apart from the addi-
tional types and fields provided by this package, some of the familiar ones are
handled in a way which is in need of explanation. This package includes some
compatibility code for bib files which were generated with a traditional BibTeX
style in mind. Unfortunately, it is not possible to handle all legacy files automati-
cally because biblatex’s data model is slightly diVerent from traditional BibTeX.
Therefore, such bib files will most likely require editing in order to work properly
with this package. In sum, the following items are diVerent from traditional BibTeX
styles:

• The entry type @inbook. See §§ 2.1.1 and 2.3.1 for details.
• The fields institution, organization, and publisher as well as the aliases

address and school. See §§ 2.2.2, 2.2.5, 2.3.4 for details.
• The handling of certain types of titles. See § 2.3.5 for details.
• The field series. See §§ 2.2.2 and 2.3.7 for details.
• The fields year and month. See §§ 2.2.2, 2.3.8, 2.3.9 for details.
• The field edition. See § 2.2.2 for details.
• The field key. See § 2.3.2 for details.

Users of the jurabib package should note that the shortauthor field is treated as
a name list by biblatex, see § 2.3.3 for details.

2.3.1 The Entry Type @inbook

Use the @inbook entry type for a self-contained part of a book with its own ti-
tle only. It relates to @book just like @incollection relates to @collection. See
§ 2.3.5 for examples. If you want to refer to a chapter or section of a book, simply
use the book type and add a chapter and/or pages field. Whether a bibliography
should at all include references to chapters or sections is controversial because a
chapter is not a bibliographic entity.

2.3.2 Missing and Omissible Data

The fields marked as ‘required’ in § 2.1.1 are not strictly required in all cases. The
bibliography styles which ship with this package can get by with as little as a title
field for most entry types. A book published anonymously, a periodical without an
explicit editor, or a software manual without an explicit author should pose no
problem as far as the bibliography is concerned. Citation styles, however, may
have diVerent requirements. For example, an author-year citation scheme obvi-
ously requires an author/editor and a year field.

You may generally use the label field to provide a substitute for any missing
data required for citations. How the label field is employed depends on the cita-
tion style. The author-year citation styles which come with this package use the
label field as a fallback if either the author/editor or the year is missing. The
numeric styles, on the other hand, do not use it at all since the numeric scheme
is independent of the available data. The author-title styles ignore it as well, be-

28

cause the bare title is usually suYcient to form a unique citation and a title is
expected to be available in any case. The label field may also be used to override
the non-numeric portion of the automatically generated labelalpha field used by
alphabetic citation styles. See § 4.2.4 for details.

Note that traditional BibTeX styles support a key field which is used for alpha-
betizing if both author and editor are missing. The biblatex package treats key
as an alias for sortkey. In addition to that, it oVers very fine-grained sorting con-
trols, see §§ 2.2.3 and 3.4 for details. The natbib package employs the key field as
a fallback label for citations. Use the label field instead.

2.3.3 Corporate Authors and Editors

Corporate authors and editors are given in the author or editor field, respectively.
Note that they must be wrapped in an extra pair of curly braces to prevent BibTeX
from treating them as personal names which are to be dissected into their compo-
nents. Use the shortauthor field if you want to give an abbreviated form of the
name or an acronym for use in citations.

author = {{National Aeronautics and Space Administration}},
shortauthor = {NASA},

The default citation styles will use the short name in all citations while the full
name is printed in the bibliography. For corporate editors, use the corresponding
fields editor and shorteditor. Since all of these fields are treated as name lists,
it is possible to mix personal names and corporate names, provided that the names
of all corporations and institutions are wrapped in braces.

editor = {{National Aeronautics and Space Administration}
and Doe, John},

shorteditor = {NASA and Doe, John},

Users switching from the jurabib package to biblatex should note that the
shortauthor field is treated as a name list.

2.3.4 Literal Lists

The fields institution, organization, publisher, and location are literal lists
in terms of § 2.2. This also applies to origlocation, origpublisher and to the
field aliases address and school. All of these fields may contain a list of items
separated by the keyword ‘and’. If they contain a literal ‘and’, it must be wrapped
in braces.

publisher = {William Reid {and} Company},
institution = {Office of Information Management {and} Communications},
organization = {American Society for Photogrammetry {and} Remote Sensing

and
American Congress on Surveying {and} Mapping},

Note the diVerence between a literal ‘{and}’ and the list separator ‘and’ in the
above examples. You may also wrap the entire name in braces:

publisher = {{William Reid and Company}},

29

institution = {{Office of Information Management and Communications}},
organization = {{American Society for Photogrammetry and Remote Sensing}

and
{American Congress on Surveying and Mapping}},

Legacy files which have not been updated for use with biblatex will still work if
these fields do not contain a literal ‘and’. However, note that you will miss out on
the additional features of literal lists in this case, such as configurable formatting
and automatic truncation.

2.3.5 Titles

The following examples demonstrate how to handle diVerent types of titles. Let’s
start with a five-volume work which is referred to as a whole:

@MvBook{works,
author = {Shakespeare, William},
title = {Collected Works},
volumes = {5},
...

The individual volumes of a multi-volume work usually have a title of their own.
Suppose the fourth volume of the Collected Works includes Shakespeare’s sonnets
and we are referring to this volume only:

@Book{works:4,
author = {Shakespeare, William},
maintitle = {Collected Works},
title = {Sonnets},
volume = {4},
...

If the individual volumes do not have a title, we put the main title in the title
field and include a volume number:

@Book{works:4,
author = {Shakespeare, William},
title = {Collected Works},
volume = {4},
...

In the next example, we are referring to a part of a volume, but this part is a self-
contained work with its own title. The respective volume also has a title and there
is still the main title of the entire edition:

@InBook{lear,
author = {Shakespeare, William},
bookauthor = {Shakespeare, William},
maintitle = {Collected Works},
booktitle = {Tragedies},
title = {King Lear},
volume = {1},
pages = {53-159},
...

30

Suppose the first volume of the Collected Works includes a reprinted essay by a well-
known scholar. This is not the usual introduction by the editor but a self-contained
work. The Collected Works also have a separate editor:

@InBook{stage,
author = {Expert, Edward},
title = {Shakespeare and the Elizabethan Stage},
bookauthor = {Shakespeare, William},
editor = {Bookmaker, Bernard},
maintitle = {Collected Works},
booktitle = {Tragedies},
volume = {1},
pages = {7-49},
...

See § 2.3.7 for further examples.

2.3.6 Editorial Roles

The type of editorial role performed by an editor in one of the editor fields
(i. e., editor, editora, editorb, editorc) may be specified in the correspond-
ing editor...type field. The following roles are supported by default. The role
‘editor’ is the default. In this case, the editortype field is omissible.

editor The main editor. This is the most generic editorial role and the default value.
compiler Similar to editor but used if the task of the editor is mainly compiling.
founder The founding editor of a periodical or a comprehensive publication project such as

a ‘Collected Works’ edition or a long-running legal commentary.
continuator An editor who continued the work of the founding editor (founder) but was sub-

sequently replaced by the current editor (editor).
redactor A secondary editor whose task is redacting the work.

reviser A secondary editor whose task is revising the work.
collaborator A secondary editor or a consultant to the editor.

For example, if the task of the editor is compiling, you may indicate that in the
corresponding editortype field:

@Collection{...,
editor = {Editor, Edward},
editortype = {compiler},
...

There may also be secondary editors in addition to the main editor:

@Book{...,
author = {...},
editor = {Editor, Edward},
editora = {Redactor, Randolph},
editoratype = {redactor},
editorb = {Consultant, Conrad},
editorbtype = {collaborator},
...

31

Periodicals or long-running publication projects may see several generations of
editors. For example, there may be a founding editor in addition to the current
editor:

@Book{...,
author = {...},
editor = {Editor, Edward},
editora = {Founder, Frederic},
editoratype = {founder},
...

Note that only the editor is considered in citations and when sorting the biblio-
graphy. If an entry is typically cited by the founding editor (and sorted accordingly
in the bibliography), the founder goes into the editor field and the current editor
moves to one of the editor... fields:

@Collection{...,
editor = {Founder, Frederic},
editortype = {founder},
editora = {Editor, Edward},
...

You may add more roles by initializing and defining a new localization key whose
name corresponds to the identifier in the editor...type field. See §§ 3.7 and 4.9.1
for details.

2.3.7 Publication and Journal Series

The series field is used by traditional BibTeX styles both for the main title of a
multi-volume work and for a publication series, i. e., a loosely related sequence of
books by the same publisher which deal with the same general topic or belong
to the same field of research. This may be ambiguous. This package introduces a
maintitle field for multi-volume works and employs series for publication series
only. The volume or number of a book in the series goes in the number field in this
case:

@Book{...,
author = {Expert, Edward},
title = {Shakespeare and the Elizabethan Age},
series = {Studies in English Literature and Drama},
number = {57},
...

The @article entry type makes use of the series field as well, but handles it
in a special way. First, a test is performed to determine whether the value of the
field is an integer. If so, it will be printed as an ordinal. If not, another test is
performed to determine whether it is a localization key. If so, the localized string
is printed. If not, the value is printed as is. Consider the following example of a
journal published in numbered series:

@Article{...,
journal = {Journal Name},

32

Date Specification Formatted Date (Examples)

Short Format Long Format

1850 1850 1850
1997/ 1997– 1997–
1967-02 02/1967 February 1967
2009-01-31 31/01/2009 31st January 2009
1988/1992 1988–1992 1988–1992
2002-01/2002-02 01/2002–02/2002 January 2002–February 2002
1995-03-30/1995-04-05 30/03/1995–05/04/1995 30th March 1995–5th April 1995

Table 2: Date Specifications

series = {3},
volume = {15},
number = {7},
year = {1995},
...

This entry will be printed as “Journal Name. 3rd ser. 15.7 (1995)”. Some journals
use designations such as “old series” and “new series” instead of a number. Such
designations may be given in the series field as well, either as a literal string
or as a localization key. Consider the following example which makes use of the
localization key newseries:

@Article{...,
journal = {Journal Name},
series = {newseries},
volume = {9},
year = {1998},
...

This entry will be printed as “Journal Name. New ser. 9 (1998)”. See § 4.9.2 for a
list of localization keys defined by default.

2.3.8 Date Specifications

The date fields date, origdate, eventdate, and urldate require a date specifi-
cation in yyyy-mm-dd format. Date ranges are given as yyyy-mm-dd/yyyy-mm-dd.
Partial dates are valid provided that date components are omitted at the end only.
You may specify an open ended date range by giving the range separator and
omitting the end date (e. g., yyyy/). See table 2 for some examples of valid date
specifications and the formatted date autmatically generated by biblatex. The
formatted date is language specific and will be adapted automatically. If there is
no date field in an entry, biblatex will also consider the fields year and month
for backwards compatibility with traditional BibTeX. Style author should note that
date fields like date or origdate are only available in the bib file. All dates are
parsed and dissected into their components as the bib file is processed. The date
components are made available to styles by way of the special fields discussed in
§ 4.2.4.3. See this section and table 7 on page 126 for further information.

33

2.3.9 Months and Journal Issues

The month field is an integer field. The bibliography style converts the month to a
language-dependent string as required. For backwards compatibility, you may also
use the following three-letter abbreviations in the month field: jan, feb, mar, apr,
may, jun, jul, aug, sep, oct, nov, dec. Note that these abbreviations are BibTeX
strings which must be given without any braces or quotes. When using them, don’t
say month={jan} or month="jan" but month=jan. It is not possible to specify a
month such as month={8/9}. Use the date field for date ranges instead. Quar-
terly journals are typically identified by a designation such as ‘Spring’ or ‘Summer’
which should be given in the issue field. The placement of the issue field in
@article entries is similar to and overrides the month field.

2.3.10 Pagination

When specifying a page or page range, either in the pages field of an entry or in
the 〈postnote〉 argument to a citation command, it is convenient to have biblatex
add prefixes like ‘p.’ or ‘pp.’ automatically and this is indeed what this package
does by default. However, some works may use a diVerent pagination scheme or
may not be cited by page but rather by verse or line number. This is when the
pagination and bookpagination fields come into play. As an example, consider
the following entry:

@InBook{key,
title = {...},
pagination = {verse},
booktitle = {...},
bookpagination = {page},
pages = {53--65},
...

The bookpagination field aVects the formatting of the pages and pagetotal
fields in the list of references. Since page is the default, this field is omissible
in the above example. In this case, the page range will be formatted as ‘pp. 53–65’.
Suppose that, when quoting from this work, it is customary to use verse numbers
rather than page numbers in citations. This is reflected by the pagination field,
which aVects the formatting of the 〈postnote〉 argument to any citation command.
With a citation like \cite[17]{key}, the postnote will be formatted as ‘v. 17’. Set-
ting the pagination field to section would yield ‘§ 17’. See § 3.11.3 for further
usage instructions.

The pagination and bookpagination fields are key fields. This package will
try to use their value as a localization key, provided that the key is defined. Al-
ways use the singular form of the key name in bib files, the plural is formed
automatically. The keys page, column, line, verse, section, and paragraph are
predefined, with page being the default. The string ‘none’ has a special meaning
when used in a pagination or bookpagination field. It suppresses the prefix for
the respective entry. If there are no predefined localization keys for the pagination
scheme required by a certain entry, you can simply add them. See the commands
\NewBibliographyString and \DefineBibliographyStrings in § 3.7. You need

34

to define two localization strings for each additional pagination scheme: the singu-
lar form (whose localization key corresponds to the value of the pagination field)
and the plural form (whose localization key must be the singular plus the letter
‘s’). See the predefined keys in § 4.9.2 for examples.

2.4 Hints and Caveats

This section provides some additional hints concerning the data interface of this
package. It also addresses some common problems.

2.4.1 Cross-referencing

2.4.1.1 The crossref field (BibTeX)

The crossref field is a convenient way to establish a parent/child relation be-
tween two associated entries. Unfortunately, BibTeX uses symmetric field mapping
which reduces the usefulness of the crossref field significantly. The are two issues
with symmetric field mapping, as seen in the following example:

@Book{book,
author = {Author},
bookauthor = {Author},
title = {Booktitle},
booktitle = {Booktitle},
subtitle = {Booksubtitle},
booksubtitle = {Booksubtitle},
publisher = {Publisher},
location = {Location},
date = {1995},

}
@InBook{inbook,

crossref = {book},
title = {Title},
subtitle = {},
pages = {5--25},

}

As BibTeX is not capable of mapping the title field of the parent to the booktitle
field of the child, the title of the book needs to be given twice. The style then
needs to ignore the booktitle of the parent since it is only required to work
around this fundamental limitation of BibTeX. The problem with the subtitle
field is the inverse of that. Since the subtitle of the parent would become the
subtitle, rather than in the booksubtitle, of the child, we need to add an empty
subtitle field to the child entry to prevent inheritance of this field. Of course we
also need to duplicate the subtitle in the parent entry to ensure that it is available
as booksubtitle in the child entry. In short, using BibTeX’s crossref field tends
to bloat database files and corrupt the data model.

2.4.1.2 The crossref field (Biber)

With Biber, the limitations of BibTeX’s crossref field belong to the past. Biber
features a highly customizable cross-referencing mechanism with flexible data in-

35

heritance rules. Duplicating certain fields in the parent entry or adding empty
fields to the child entry is longer required. Entries are specified in a natural way:

@Book{book,
author = {Author},
title = {Booktitle},
subtitle = {Booksubtitle},
publisher = {Publisher},
location = {Location},
date = {1995},

}
@InBook{inbook,

crossref = {book},
title = {Title},
pages = {5--25},

}

The title field of the parent will be copied to the booktitle field of the child,
the subtitle becomes the booksubtitle. The author of the parent becomes the
bookauthor of the child and, since the child does not provide an author field, it is
also duplicated as the author of the child. After data inheritance, the child entry
is similar to this:

author = {Author},
bookauthor = {Author},
title = {Title},
booktitle = {Booktitle},
booksubtitle = {Booksubtitle},
publisher = {Publisher},
location = {Location},
date = {1995},
pages = {5--25},

See appendix a for a list of mapping rules set up by default. Note that all of this is
customizable. See § 4.5.3 on how to configure Biber’s cross-referencing mechanism.
See also § 2.2.3.

2.4.1.3 The xref field

In addition to the crossref field, biblatex supports a simplified cross-referencing
mechanism based on the xref field. This is useful if you want to establish a parent/
child relation between two associated entries but prefer to keep them independent
as far as the data is concerned. The xref field diVers from crossref in that the
child entry will not inherit any data from the parent. If the parent is referenced
by a certain number of child entries, biblatex will automatically add it to the
bibliography. The threshold is controlled by the mincrossrefs package option
from § 3.1.2.1. The xref field is supported with all backends. See also § 2.2.3.

36

Parameter Switch Capacity

Default --big --huge --wolfgang

max_cites --mcites 750 2000 5000 7500
max_ent_ints --mentints 3000 4000 5000 7500
max_ent_strs --mentstrs 3000 6000 10000 10000
max_fields --mfields 17250 30000 85000 125000
max_strings --mstrings 4000 10000 19000 30000
pool_size --mpool 65530 130000 500000 750000
wiz_fn_space --mwizfuns 3000 6000 10000 10000
hash_prime 4253 8501 16319 30011
hash_size 5000 10000 19000 35000

Table 3: Capacity and Switches of bibtex8

2.4.2 Capacity Issues

2.4.2.1 BibTeX

A venerable tool originally developed in the 1980s, BibTeX uses static memory allo-
cation, much to the dismay of users working with large bibliographical databases.
With a large bib file which contains several hundred entries, BibTeX is very likely
to run out of memory. The number of entries it can cope with depends on the
number of fields defined by the BibTeX style (bst). Style files which define a con-
siderable number of fields, such as biblatex.bst, are more likely to trigger such
problems. Unfortunately, traditional BibTeX does not output a clear error message
when it runs out of memory but exposes a rather cryptical kind of faulty behavior.
The warning messages printed in this case look like this:

Warning--I’m ignoring Jones1995’s extra "year" field
--line 422 of file huge.bib
Warning--I’m ignoring Jones1995’s extra "volume" field
--line 423 of file huge.bib

These warning messages could indeed indicate that the entry Jones1995 is faulty
because it includes two year and two volume fields. If that is not the case and
the bib file is fairly large, this is most likely a capacity issue. What makes these
warnings so confusing is that they are not tied to a specific entry. If you remove
the allegedly faulty entry, a diVerent one will trigger similar warnings. This is one
reason why switching to bibtex8 or Biber is advisable.

2.4.2.2 bibtex8

bibtex8 is a venerable tool as well and will also run out of memory with its default
capacity. Switching from traditional BibTeX to bibtex8 is still an improvement
because the capacity of the latter may be increased at run-time via command-line
switches and it also prints unambiguous error messages, for example:

17289 fields:
Sorry---you’ve exceeded BibTeX’s total number of fields 17250

Table 3 gives an overview of the various capacity parameters of bibtex8 and
the command-line switches used to increase their default values. There are two

37

ways to increase the capacity on the command-line. You may use a high-level
switch like --huge to select a diVerent set of defaults or low-level switches such as
--mfields to modify a single parameter. The first thing you should always do is
run bibtex8 with the --wolfgang switch. Don’t even bother trying anything else.
With a very large database, however, even that capacity may be too small. In this
case, you need to resort to the low-level switches. Here is an example of a set of
switches which should cope with a bib file containing about 1000 entries:

bibtex8 --wolfgang --mcites 30000 --mentints 30000 --mentstrs 40000
--mfields 250000 --mstrings 35000 --mpool 750000 --csfile csfile.csf
auxfile

When taking a closer look at table 3, you will notice that there are two parameters
which can not be modified directly, hash_prime and hash_size. Increasing these
values is only possible with the high-level switches. That is why the above com-
mand includes the --wolfgang switch in addition to the low-level switches. This
situation is very unfortunate because the hash size eVectively sets a cap on some
other parameters. For example, max_strings can not be greater than hash_size.
If you hit this cap, all you can do is recompile bibtex8 with a larger capacity. Also
note that the wiz_fn_space parameter is not related to the bib file but to the
memory requirements of the bst file. biblatex.bst needs a value of about 6000.
The value 10000 implicitly used by the --wolfgang switch is fine.

2.4.2.3 Biber

Biber eliminates all of the above limitations.

2.4.3 Sorting and Encoding Issues

2.4.3.1 BibTeX

Traditional BibTeX can only alphabetize Ascii characters correctly. If the biblio-
graphic data includes non-Ascii characters, they have to be given in Ascii notation.
For example, instead of typing a letter like ‘ä’ directly, you need to input it as \"a,
using an accent command and the Ascii letter. This Ascii notation needs to be
wrapped in a pair of curly braces. Traditional BibTeX will then ignore the accent
and use the Ascii letter for sorting. Here are a few examples:

author = {S{\'a}nchez, Jos{\'e}},
editor = {Ma{\ss}mann, R{\"u}diger},
translator = {Ferdi{\`e}re, Fr{\c{c}}ois},
title = {{\OE}uvres compl{\`e}tes},

Apart from it being inconvenient, there are two major issues with this convention.
One subtle problem is that the extra set of braces suppresses the kerning on both
sides of all non-Ascii letters. But first and foremost, simply ignoring all accents may
not be the correct way to handle them. For example, in Danish, the letter ‘å’ is the
very last letter of the alphabet, so it should be alphabetized after ‘z’. BibTeX will
sort it like an ‘a’. The ‘æ’ ligature and the letter ‘ø’ are also sorted after ‘z’ in this
language. There are similar cases in Norwegian. In Swedish, the letter ‘ö’ is the very
last letter of the alphabet and the letters ‘å’ and ‘ä’ are also alphabetized after ‘z’,

38

rather than like an ‘a’. What’s more, even the sorting of Ascii characters is done in a
rather peculiar way by traditional BibTeX because the sorting algorithm uses Ascii
codepage order (0-9,A-Z,a-z). This implies that the lowercase letter ‘a’ would
end up after the uppercase ‘Z’, which is not even acceptable in the language BibTeX
was originally designed for. The traditional bst files work around this problem by
converting all strings used for sorting to lowercase, i. e., sorting is eVectively case-
insensitive. See also § 2.4.3.4.

2.4.3.2 bibtex8

Switching to bibtex8 will help in such cases. bibtex8 can sort case-sensitively
and it can handle 8-bit characters properly, provided that you supply it with a
suitable csf file and give the --csfile switch on the command line. This also im-
plies that it is possible to apply language specific sorting rules to the bibliography.
The biblatex package comes with csf files for some common Western European
encodings. bibtex8 also ships with a few csf files. Note that biblatex.bst can
not detect if it is running under traditional BibTeX or bibtex8, hence the bibtex8
package option. By default, sorting is case-insensitive since this is required for tra-
ditional BibTeX. If the bibtex8 package option is enabled, sorting is case-sensitive.

Since bibtex8 is backwards compatible with traditional BibTeX, it is possible
to mix 8-bit input and Ascii notation. This is useful if the encoding used in the
bib file does not cover all required characters. There are also a few marginal cases
in which the Ascii notation scheme would yield better sorting results. A typical
example is the ligature ‘œ’. bibtex8 will handle this ligature like a single character.
Depending on the sorting scheme defined in the csf file, it could be treated like
an ‘o’ or alphabetized after the letter ‘o’ but it can not be sorted as ‘oe’. The Ascii
notation (\oe) is equivalent to ‘oe’ during sorting:

title = {Œuvres complètes},
title = {{\OE}uvres complètes},

Sometimes even that is not suYcient and further tricks are required. For example,
the letter ‘ß’ in German is particularly tricky. This letter is essentially alphabet-
ized as ‘ss’ but after ‘ss’. The name ‘Baßmann’ would be alphabetized as follows:
Basmann/Bassmann/Baßmann/Bastmann. In this case, the Ascii notation (\ss)
would yield slightly better sorting results than ‘ß’ in conjunction with a csf file
which treats ‘ß’ like ‘s’:

author = {Ba{\ss}mann, Paul},

To get it absolutely right, however, you need to resort to the sortname field:

author = {Baßmann, Paul},
sortname = {Basszzmann, Paul},

Not only BibTeX, LaTeX needs to know about the encoding as well. See § 2.4.3.4 on
how to specify encodings.

39

2.4.3.3 Biber

Biber handles Ascii, 8-bit encodings such as Latin 1, and utf-8. It features true Uni-
code support and is capable of reencoding the bib data on the fly in a robust way.
For sorting, Biber uses a Perl implementation of the Unicode Collation Algorithm
(uca), as outlined in Unicode Technical Standard #10.1 Collation tailoring based
on the Unicode Common Locale Data Repository (cldr) is in the process of be-
ing added.2 The bottom line is that Biber will deliver sorting results far superior
to both BibTeX and bibtex8 in many cases. If you are interested in the techni-
cal details, section 1.8 of Unicode Technical Standard #10 will provide you with a
very concise summary of why the inadequateness of traditional BibTeX and even
bibtex8 is of a very general nature and not limited to the lack of utf-8 support.3

Supporting Unicode implies much more than handling utf-8 input. Unicode is
a complex standard covering more than its most well-known parts, the Unicode
character encoding and transport encodings such as utf-8. It also standardizes as-
pects such as string collation, which is required for language-sensitive sorting. For
example, by using the Unicode Collation Algorithm, Biber can handle the charac-
ter ‘ß’ mentioned as an example in § 2.4.3.2 without any manual intervention. All
you need to do to get localized sorting is specify the locale:

\usepackage[backend=biber,sortlocale=de]{biblatex}

If the language of the document corresponds to the main locale of the operating
system, sortlocale is omissible as Biber will detect the locale settings of the en-
vironment automatically. Note that this will also work with 8-bit encodings such
as Latin 9, i. e., you can take advantage of Unicode-based sorting even though you
are not using utf-8 input. See § 2.4.3.4 on how to specify input and data encodings
properly.

2.4.3.4 Specifying Encodings

When using a non-Ascii encoding in the bib file, it is important to understand what
biblatex can do for you and what may require manual intervention. The package
takes care of the LaTeX side, i. e., it ensures that the data imported from the bbl
file is interpreted correctly, provided that the bibencoding package option is set
properly. Depending on the backend, the BibTeX side may demand attention, too.
When using bibtex8, you need to supply bibtex8 with a matching csf file as it
needs to know about the encoding of the bib file to be able to alphabetize the
entries correctly. Unfortunately, there is no way for biblatex to pass this infor-
mation to bibtex8 automatically. The only way is setting its --csfile option on
the command line when running bibtex8. When using Biber, all of this is handled
automatically and no further steps, apart from setting the bibencoding option in
certain cases, are required. Here are a few typical usage scenarios along with the
relevant lines from the document preamble:

1 http://unicode.org/reports/tr10/
2 http://cldr.unicode.org/
3 http://unicode.org/reports/tr10/#Common_Misperceptions

40

http://unicode.org/reports/tr10/
http://cldr.unicode.org/
http://unicode.org/reports/tr10/##Common_Misperceptions

• Ascii notation in both the tex and the bib file with pdfTeX or traditional TeX
(this will work with BibTeX, bibtex8, and Biber):

\usepackage{biblatex}

• Latin 1 encoding (iso-8859-1) in the tex file, Ascii notation in the bib file with
pdfTeX or traditional TeX (BibTeX, bibtex8, Biber):

\usepackage[latin1]{inputenc}
\usepackage[bibencoding=ascii]{biblatex}

• Latin 9 encoding (iso-8859-15) in both the tex and the bib file with pdfTeX or
traditional TeX (bibtex8, Biber):

\usepackage[latin9]{inputenc}
\usepackage[bibencoding=auto]{biblatex}

Since bibencoding=auto is the default setting, the option is omissible. The
following setup will have the same eVect:

\usepackage[latin9]{inputenc}
\usepackage{biblatex}

• utf-8 encoding in the tex file, Latin 1 (iso-8859-1) in the bib file with pdfTeX
or traditional TeX (bibtex8, Biber):

\usepackage[utf8]{inputenc}
\usepackage[bibencoding=latin1]{biblatex}

The same scenario with XeTeX or LuaTeX in native utf-8 mode:

\usepackage[bibencoding=latin1]{biblatex}

• Using utf-8 encoding in both the tex and the bib file is not possible with
traditional BibTeX or bibtex8 since neither of them is capable of handling
utf-8. Unless you switch to Biber, you need to use an 8-bit encoding such as
Latin 1 (see above) or resort to Ascii notation in this case:

\usepackage[utf8]{inputenc}
\usepackage[bibencoding=ascii]{biblatex}

The same scenario with XeTeX or LuaTeX in native utf-8 mode:

\usepackage[bibencoding=ascii]{biblatex}

Biber can handle Ascii notation, 8-bit encodings such as Latin 1, and utf-8. It is
also capable of reencoding the bib data on the fly (replacing the limited macro-
level reencoding feature of biblatex). This will happen automatically if required,
provided that you specify the encoding of the bib files properly. In addition to the
scenarios discussed above, Biber can also handle the following cases:

• Transparent utf-8 workflow, i. e., utf-8 encoding in both the tex and the bib
file with pdfTeX or traditional TeX:

\usepackage[utf8]{inputenc}
\usepackage[bibencoding=auto]{biblatex}

41

Since bibencoding=auto is the default setting, the option is omissible:

\usepackage[utf8]{inputenc}
\usepackage{biblatex}

The same scenario with XeTeX or LuaTeX in native utf-8 mode:

\usepackage{biblatex}

• It is even possible to combine an 8-bit encoded tex file with utf-8 encoding in
the bib file, provided that all characters in the bib file are also covered by the
selected 8-bit encoding:

\usepackage[latin1]{inputenc}
\usepackage[bibencoding=utf8]{biblatex}

Some workarounds may be required when using traditional TeX or pdfTeX with
utf-8 encoding because inputenc’s utf8 module does not cover all of Unicode.
Roughly speaking, it only convers the Western European Unicode range. When
loading inputenc with the utf8 option, biblatex will normally instruct Biber
to reencode the bib data to utf-8. This may lead to inputenc errors if some of
the characters in the bib file are outside the limited Unicode range supported by
inputenc.

• If you are aVected by this problem, try setting the safeinputenc option:

\usepackage[utf8]{inputenc}
\usepackage[safeinputenc]{biblatex}

If this option is enabled, biblatex will ignore inputenc’s utf8 option and use
Ascii. Biber will then try to convert the bib data to Ascii notation. For example,
it will convert S̨ to \k{S}. This option is similar to setting texencoding=ascii
but will only take eVect in this specific scenario (inputenc/inputenx with
utf-8). This workaround takes advantage of the fact that both Unicode and
the utf-8 transport encoding are backwards compatible with Ascii.

This solution may be acceptable as a workaround if the data in the bib file is
mostly Ascii anyway, with only a few strings, such as some authors’ names, causing
problems. However, keep in mind that it will not magically make traditional TeX
or pdfTeX support Unicode. It may help if the occasional odd character is not
supported by inputenc, but may still be processed by TeX when using an accent
command (e. g., \d{S} instead of S.). If you need full Unicode support, however,
switch to XeTeX or LuaTeX.

42

2.4.4 Editors and Compiler Scripts

This section is in need of an update to match the new script interface used by
biblatex. For the time being, see the documentation of the logreq package1 and
the Biblatex Developer’s Wiki for a draft spec.2

3 User Guide

This part of the manual documents the user interface of the biblatex package.
The user guide covers everything you need to know in order to use biblatex with
the default styles that come with this package. You should read the user guide
first in any case. If you want to write your own citation and/or bibliography styles,
continue with the author guide afterwards.

3.1 Package Options

All package options are given in 〈key〉=〈value〉 notation. The value true is omis-
sible with all boolean keys. For example, giving sortcites without a value is
equivalent to sortcites=true.

3.1.1 Load-time Options

The following options must be used as biblatex is loaded, i. e., in the optional
argument to \usepackage.

style=〈file〉 default: numeric

Loads the bibliography style file.bbx and the citation style file.cbx. See § 3.3
for an overview of the standard styles.

bibstyle=〈file〉 default: numeric

Loads the bibliography style file.bbx. See § 3.3.2 for an overview of the standard
bibliography styles.

citestyle=〈file〉 default: numeric

Loads the citation style file.cbx. See § 3.3.1 for an overview of the standard
citation styles.

natbib=true, false default: false

Loads compatibility module which provides aliases for the citation commands of
the natbib package. See § 3.6.9 for details.

mcite=true, false default: false

Loads a citation module which provides mcite/mciteplus-like citation commands.
See § 3.6.10 for details.

1 http://www.ctan.org/tex-archive/macros/latex/contrib/logreq/
2 http://sourceforge.net/apps/mediawiki/biblatex/index.php?title=Workflow_

Automation

43

http://www.ctan.org/tex-archive/macros/latex/contrib/logreq/
http://sourceforge.net/apps/mediawiki/biblatex/index.php?title=Workflow_Automation
http://sourceforge.net/apps/mediawiki/biblatex/index.php?title=Workflow_Automation

3.1.2 Preamble Options

3.1.2.1 General

The following options may be used in the optional argument to \usepackage as
well as in the configuration file and the document preamble. The default value
listed to the right is the package default. Note that bibliography and citation styles
may modify the default setting at load time, see § 3.3 for details.

sorting=nty, nyt, nyvt, anyt, anyvt, ynt, ydnt, none, debug, 〈name〉 default: nty

The sorting order of the bibliography. Unless stated otherwise, the entries are
sorted in ascending order. The following choices are available by default:

nty Sort by name, title, year.
nyt Sort by name, year, title.
nyvt Sort by name, year, volume, title.
anyt Sort by alphabetic label, name, year, title.
anyvt Sort by alphabetic label, name, year, volume, title.
ynt Sort by year, name, title.
ydnt Sort by year (descending), name, title.
none Do not sort at all. All entries are processed in citation order.
debug Sort by entry key. This is intended for debugging only.
〈name〉 Use 〈name〉, as defined with \DeclareSortingScheme (§ 4.5.1) Biber only

Using any of the ‘alphabetic’ sorting schemes only makes sense in conjunction with
a bibliography style which prints the corresponding labels. Note that some biblio-
graphy styles initialize this package option to a value diVerent from the package
default (nty). See § 3.3.2 for details. Please refer to § 3.4 for an in-depth expla-
nation of the above sorting options as well as the fields considered in the sorting
process. See also § 4.5.1 on how to adapt the predefined schemes or define new
ones.

sortcase=true, false default: true

Whether or not to sort the bibliography and the list of shorthands case-sensitively.
Note that case-sensitive sorting is only supported by the bibtex8 and Biber back-
ends. Sorting is always case-insensitive with legacy BibTeX. See the backend option
for details.

sortupper=true, false default: true Biber only

This option corresponds to Biber’s --sortupper command-line option. It has no
eVect with any other backend. If enabled, the bibliography is sorted in ‘uppercase
before lowercase’ order. Disabling this option means ‘lowercase before uppercase’
order.

sortlocale=〈locale〉 Biber only

This option corresponds to Biber’s --sortlocale command-line option. It has no
eVect with any other backend. If set, it specifies the locale to be used for sorting.

44

While biblatex provides no default value for this option, Biber will inherit the
locale settings from the environment if no locale has been specified explicitly.

sortlos=bib, los default: los

The sorting order of the list of shorthands. The following choices are available:

bib Sort according to the sorting order of the bibliography.
los Sort by shorthand.

sortcites=true, false default: false

Whether or not to sort citations if multiple entry keys are passed to a citation
command. If this option is enabled, citations are sorted according to the sorting
order of the bibliography. This feature works with all citation styles.

maxnames=〈integer〉 default: 3

A threshold aVecting all lists of names (author, editor, etc.). If a list exceeds this
threshold, i. e., if it holds more than 〈integer〉 names, it is automatically truncated
according to the setting of the minnames option. maxnames is the master option
which sets both maxbibnames and maxcitenames.

minnames=〈integer〉 default: 1

A limit aVecting all lists of names (author, editor, etc.). If a list holds more
than 〈maxnames〉 names, it is automatically truncated to 〈minnames〉 names. The
〈minnames〉 value must be smaller than or equal to 〈maxnames〉. minnames is the
master option which sets both minbibnames and mincitenames.

maxbibnames=〈integer〉 default: 〈maxnames〉

Similar to maxnames but aVects only the bibliography.

minbibnames=〈integer〉 default: 〈minnames〉

Similar to minnames but aVects only the bibliography.

maxcitenames=〈integer〉 default: 〈maxnames〉

Similar to maxnames but aVects only the citations in the document body.

mincitenames=〈integer〉 default: 〈minnames〉

Similar to minnames but aVects only the citations in the document body.

maxitems=〈integer〉 default: 3

Similar to maxnames, but aVecting all literal lists (publisher, location, etc.).

minitems=〈integer〉 default: 1

Similar to minnames, but aVecting all literal lists (publisher, location, etc.).

autocite=plain, inline, footnote, superscript, ...

This option controls the behavior of the \autocite command discussed in § 3.6.4.

45

Language Region/Dialect Identifier

Danish Denmark danish
Dutch Netherlands dutch
English USA american

United Kingdom british
Canada canadian
Australia australian
New Zealand newzealand

Finnish Finland finnish
French France, Canada french
German Germany german

Austria austrian
German (new) Germany ngerman

Austria naustrian
Greek Greece greek
Italian Italy italian
Norwegian Norway norwegian
Portuguese Brazil brazilian

Portugal portuguese
Spanish Spain spanish
Swedish Sweden swedish

Table 4: Supported Languages

The plain option makes \autocite behave like \cite, inline makes it behave
like \parencite, footnote makes it behave like \footcite, and superscript
makes it behave like \supercite. The options plain, inline, and footnote are
always available, the superscript option is only provided by the numeric citation
styles which come with this package. The citation style may also define additional
options. The default setting of this option depends on the selected citation style,
see § 3.3.1.

autopunct=true, false default: true

This option controls whether the citation commands scan ahead for punctuation
marks. See § 3.6 and \DeclareAutoPunctuation in § 4.7.5 for details.

language=auto, 〈language〉 default: auto

This option controls multilingual support. When set to auto, biblatex will try
to get the main document language from the babel package (and fall back to
English if babel is not available). This is the default behavior. It is also possible
to select the document language manually. In this case, the babel option below
will have no eVect. Please refer to table 4 for a list of supported languages and the
corresponding identifiers.

clearlang=true, false default: true

If this option is enabled, biblatex will automatically clear the language field of
all entries whose language matches the babel language of the document (or the
language specified explicitly with the language option) in order to omit redun-
dant language specifications. The language mappings required by this feature are
provided by the \DeclareRedundantLanguages command from § 4.9.1.

46

babel=none, hyphen, other, other* default: none

This option controls which language environment is used if the babel package is
loaded and a bibliography entry includes a hyphenation field (see § 2.2.3). Note
that biblatex automatically adjusts to the main document language if babel is
loaded. In multilingual documents, it will also continually adjust to the current
language as far as citations and the default language of the bibliography is con-
cerned. This option is for switching languages on a per-entry basis within the
bibliography. The possible choices are:

none Disable this feature, i. e., do not use any language environment at
all.

hyphen Enclose the entry in a hyphenrules environment. This will load hy-
phenation patterns for the language specified in the hyphenation
field of the entry, if available.

other Enclose the entry in an otherlanguage environment. This will load
hyphenation patterns for the specified language, enable all extra def-
initions which babel and biblatex provide for the respective lan-
guage, and translate key terms such as ‘editor’ and ‘volume’. The
extra definitions include localizations of the date format, of ordinals,
and similar things.

other* Enclose the entry in an otherlanguage* environment. Please note
that biblatex treats otherlanguage* like otherlanguage but other
packages may make a distinction in this case.

block=none, space, par, nbpar, ragged default: none

This option controls the extra spacing between blocks, i. e., larger segments of a
bibliography entry. The possible choices are:

none Do not add anything at all.
space Insert additional horizontal space between blocks. This is similar to

the default behavior of the standard LaTeX document classes.
par Start a new paragraph for every block. This is similar to the openbib

option of the standard LaTeX document classes.
nbpar Similar to the par option, but disallows page breaks at block bound-

aries and within an entry.
ragged Inserts a small negative penalty to encourage line breaks at block

boundaries and sets the bibliography ragged right.

The \newblockpunct command may also be redefined directly to achieve diVerent
results, see § 3.8.1. Also see § 4.7.1 for additional information.

notetype=foot+end, footonly, endonly default: foot+end

This option controls the behavior of \mkbibfootnote, \mkbibendnote, and similar
wrappers from § 4.10.4. The possible choices are:

foot+end Support both footnotes and endnotes, i. e., \mkbibfootnote will gen-
erate footnotes and \mkbibendnote will generate endnotes.

47

footonly Force footnotes, i. e., make \mkbibendnote generate footnotes.
endonly Force endnotes, i. e., make \mkbibfootnote generate endnotes.

hyperref=true, false, auto default: auto

Whether or not to transform citations and back references into clickable hyperlinks.
This feature requires the hyperref package. It also requires support by the selected
citation style. All standard styles which ship with this package support hyperlinks.
hyperref=auto automatically detects if the hyperref package has been loaded.

backref=true, false default: false

Whether or not to print back references in the bibliography. The back references
are a list of page numbers indicating the pages on which the respective bibliogra-
phy entry is cited. If there are refsection environments in the document, the
back references are local to the reference sections. Strictly speaking, this option
only controls whether the biblatex package collects the data required to print
such references. This feature still has to be supported by the selected bibliography
style. All standard styles which ship with this package do so.

backrefstyle=none, three, two, two+, three+, all+ default: three

This option controls how sequences of consecutive pages in the list of back refer-
ences are formatted. The following styles are available:

none Disable this feature, i. e., do not compress the page list.
three Compress any sequence of three or more consecutive pages to a

range, e. g., the list ‘1, 2, 11, 12, 13, 21, 22, 23, 24’ is compressed to
‘1, 2, 11–13, 21–24’.

two Compress any sequence of two or more consecutive pages to a range,
e. g., the above list is compressed to ‘1–2, 11–13, 21–24’.

two+ Similar in concept to two but a sequence of exactely two consecutive
pages is printed using the starting page and the localization string
sequens, e. g., the above list is compressed to ‘1 sq., 11–13, 21–24’.

three+ Similar in concept to two+ but a sequence of exactly three consec-
utive pages is printed using the starting page and the localization
string sequentes, e. g., the above list is compressed to ‘1 sq., 11 sqq.,
21–24’.

all+ Similar in concept to three+ but any sequence of consecutive pages
is printed as an open-ended range, e. g., the above list is compressed
to ‘1 sq., 11 sqq., 21 sqq.’.

All styles support both Arabic and Roman numerals. In order to avoid potentially
ambiguous lists, diVerent sets of numerals will not be mixed when generating
ranges, e. g., the list ‘iii, iv, v, 6, 7, 8’ is compressed to ‘iii–v, 6–8’.

backrefsetstyle=setonly, memonly, setormem, setandmem, memandset,
setplusmem

default: setonly

This option controls how back references to @set entires and their members are
handled. The following options are available:

48

setonly All back references are added to the @set entry. The pageref lists of
set members remain blank.

memonly References to set members are added to the respective member. Ref-
erences to the @set entry are added to all members. The pageref
list of the @set entry remains blank.

setormem References to the @set entry are added to the @set entry. References
to set members are added to the respective member.

setandmem References to the @set entry are added to the @set entry. References
to set members are added to the respective member and to the @set
entry.

memandset References to the @set entry are added to the @set entry and to
all members. References to set members are added to the respective
member.

setplusmem References to the @set entry are added to the @set entry and to
all members. References to set members are added to the respective
member and to the @set entry.

indexing=true, false, cite, bib default: false

This option controls indexing in citations and in the bibliography. More precisely,
it aVects the \ifciteindex and \ifbibindex commands from § 4.6.2. The option
is settable on a global, a per-type, or on a per-entry basis. The possible choices are:

true Enable indexing globally.
false Disable indexing globally.
cite Enable indexing in citations only.
bib Enable indexing in the bibliography only.

This feature requires support by the selected citation style. All standard styles
which ship with this package support indexing of both citations and entries in the
bibliography. Note that you still need to enable indexing globally with \makeindex
to get an index.

loadfiles=true, false default: false

This option controls whether external files requested by way of the \printfile
command are loaded. See also § 3.10.7 and \printfile in § 4.4.1. Note that this
feature is disabled by default for performance reasons.

refsection=none, part, chapter, section, subsection default: none

This option automatically starts a new reference section at a document division
such as a chapter or a section. This is equivalent to the \newrefsection command,
see § 3.5.4 for details. The following choice of document divisions is available:

none Disable this feature.
part Start a reference section at every \part command.
chapter Start a reference section at every \chapter command.
section Start a reference section at every \section command.
subsection Start a reference section at every \subsection command.

49

The starred versions if these commands will not start a new reference section.

refsegment=none, part, chapter, section, subsection default: none

Similar to the refsection option but starts a new reference segment. This is equiv-
alent to the \newrefsegment command, see § 3.5.5 for details. When using both
options, note that you can only apply this option to a lower-level document divi-
sion than the one refsection is applied to and that nested reference segments
will be local to the enclosing reference section.

citereset=none, part, chapter, section, subsection default: none

This option automatically executes the \citereset command from § 3.6.8 at a doc-
ument division such as a chapter or a section. The following choice of document
divisions is available:

none Disable this feature.
part Perform a reset at every \part command.
chapter Perform a reset at every \chapter command.
section Perform a reset at every \section command.
subsection Perform a reset at every \subsection command.

The starred versions if these commands will not trigger a reset.

abbreviate=true, false default: true

Whether or not to use long or abbreviated strings in citations and in the biblio-
graphy. This option aVects the localization modules. If this option is enabled, key
terms such as ‘editor’ are abbreviated. If not, they are written out.

date=short, long, terse, comp, iso8601 default: comp

This option controls the basic format of printed date specifications. The following
choices are available:

short Use the short format with verbose ranges, for example:
01/01/2010
21/01/2010–30/01/2010
01/21/2010–01/30/2010

long Use the long format with verbose ranges, for example:
1st January 2010
21st January 2010–30th January 2010
January 21, 2010–January 30, 2010

terse Use the short format with compact ranges, for example:
21–30/01/2010
01/21–01/30/2010

comp Use the long format with compact ranges, for example:
21st–30th January 2010
January 21–30, 2010

iso8601 Use extended iso-8601 format (yyyy-mm-dd), for example:
2010-01-01

50

2010-01-21/2010-01-30

As seen in the above examples, the actual date format is language specific. Note
that the month name in all long formats is responsive to the abbreviate package
option. The leading zeros in all short formats may be controlled separately with
the datezeros package option.

origdate=short, long, terse, comp, iso8601 default: comp

Similar to the date option but controls the format of the origdate.

eventdate=short, long, terse, comp, iso8601 default: comp

Similar to the date option but controls the format of the eventdate.

urldate=short, long, terse, comp, iso8601 default: short

Similar to the date option but controls the format of the urldate.

alldates=short, long, terse, comp, iso8601

Sets all of the above date options to the same value.

datezeros=true, false default: true

This option controls whether short and terse dates are printed with leading ze-
ros.

dateabbrev=true, false default: true

This option controls whether long and comp dates are printed with long or abbre-
viated month names. The option is similar to the generic abbreviate option but
specific to the date formatting.

defernumbers=true, false default: false

In contrast to standard LaTeX, the numeric labels generated by this package are
normally assigned to the full list of references at the beginning of the document
body. If this option is enabled, numeric labels (i. e., the labelnumber field dis-
cussed in § 4.2.4) are assigned the first time an entry is printed in any bibliography.
See § 3.11.5 for further explanation.

punctfont=true, false default: false

This option enables an alternative mechanism for dealing with unit punctuation
after a field printed in a diVerent font (for example, a title printed in italics). See
\setpunctfont in § 4.7.1 for details.

arxiv=abs, ps, pdf, format default: abs

Path selector for arXiv links. If hyperlink support is enabled, this option controls
which version of the document the arXiv eprint links will point to. The following
choices are available:

abs Link to the abstract page.
ps Link to the PostScript version.

51

pdf Link to the pdf version.
format Link to the format selector page.

See § 3.10.6 for details on support for arXiv and electronic publishing information.

backend=bibtex, bibtex8, bibtexu, biber default: bibtex

Specifies the database backend. The following backends are supported:

bibtex Legacy BibTeX. Traditional BibTeX supports Ascii encoding only. Sort-
ing is always case-insensitive.

bibtex8 bibtex8, the 8-bit implementation of BibTeX, supports Ascii and 8-
bit encodings such as Latin 1. Depending on the csf file, case-sensi-
tive sorting may be supported.

bibtexu bibtexu is a Unicode-enabled implementation of BibTeX which sup-
ports utf-8. Note that bibtexu is not actively supported by biblatex
and has not been tested as backend in any way. Biber is the recom-
mended backend.

biber Biber, the next-generation backend of biblatex, supports Ascii, 8-
bit encodings, utf-8, on-the-fly reencoding, locale-specific sorting,
and many other features. Locale-specific sorting, case-sensitive sort-
ing, and upper/lowercase precedence are controlled by the options
sortlocale, sortcase, and sortupper, respectively.

This option will typically be set permanently in the configuration file, see § 3.2 for
details. Also see § 2.4.3 for further instructions concerning the encoding of bib
files.

texencoding=auto, 〈encoding〉 default: auto

Specifies the encoding of the tex file. This option aVects the data transfered
from the backend to biblatex. When using Biber, this corresponds to Biber’s
--bblencoding option. The following choices are available:

auto Try to auto-detect the input encoding. If the inputenc/inputenx/
luainputenc package is available, biblatex will get the main en-
coding from that package. If not, it assumes utf-8 encoding if XeTeX
or LuaTeX has been detected, and Ascii otherwise.

〈encoding〉 Specifies the 〈encoding〉 explicitly. This is for odd cases in which auto-
detection fails or you want to force a certain encoding for some rea-
son.

Note that setting texencoding=〈encoding〉 will also aVect the bibencoding option
if bibencoding=auto.

bibencoding=auto, 〈encoding〉 default: auto

Specifies the encoding of the bib files. When using Biber, this corresponds to
Biber’s --bibencoding option. The following choices are available:

auto Use this option if the workflow is transparent, i. e., if the encoding of
the bib file is identical to the encoding of the tex file.

52

〈encoding〉 If the encoding of the bib file is diVerent from the one of the tex
file, you need to specify it explicitly.

By default, biblatex assumes that the tex file and the bib file use the same
encoding (bibencoding=auto). Note that some backends only support a limited
number of encodings. See § 2.4.3 for further instructions.

safeinputenc=true, false default: false Biber only

If this option is enabled, biblatex will automatically force texencoding=ascii
if the inputenc/inputenx package has been loaded and the input encoding is
utf-8, i. e., it will ignore any macro-based utf-8 support and use Ascii only. Biber
will then try to convert any non-Ascii data in the bib file to Ascii. For example, it
will convert S. to \d{S}. See § 2.4.3.4 for an explanation of why you may want to
enable this option.

bibwarn=true, false default: true

By default, biblatex will report warnings issued by the backend concerning the
data in the bib file as LaTeX warnings. Use this option to suppress such warnings.

mincrossrefs=〈integer〉 default: 2

Sets the minimum number of cross references to 〈integer〉 when requesting a
BibTeX run.1 Note that this package option merely aVects the format of certain
requests written to the transcript file. It will not have any eVect if the editor or
compiler script launching BibTeX does not include dedicated biblatex support or
if BibTeX is manually launched from the command-line.2 See § 2.4.4 for details.
This option also aVects the handling of the xref field. See the field description in
§ 2.2.3 as well as § 2.4.1 for details.

3.1.2.2 Style-specific

The following options are provided by the standard styles (as opposed to the core
package). Technically, they are preamble options like those in § 3.1.2.1.

isbn=true, false default: true

This option controls whether the fields isbn/issn/isrn are printed.

url=true, false default: true

This option controls whether the url field and the access date is printed. The
option only aVects entry types whose url information is optional. The url field of
@online entries is always printed.

1 If an entry which is cross-referenced by other entries in the bib file hits this threshold, it is
included in the bibliography even if it has not been cited explicitly. This is a standard feature
of BibTeX and not specific to biblatex. See the description of the crossref field in § 2.2.3 for
further information.

2 As of this writing, no LaTeX editors or compiler scripts with dedicated biblatex support are
known, but this will hopefully change in the future.

53

doi=true, false default: true

This option controls whether the field doi is printed.

eprint=true, false default: true

This option controls whether eprint information is printed.

3.1.2.3 Internal

The default settings of the following preamble options are controlled by biblio-
graphy and citation styles. Apart from the pagetracker and firstinits options,
which you may want to adapt, there is normally no need to set them explicitly.

pagetracker=true, false, page, spread default: false

This option controls the page tracker which is required by the \ifsamepage and
\iffirstonpage tests from § 4.6.2. The possible choices are:

true Enable the tracker in automatic mode. This is like spread if LaTeX is
in twoside mode, and like page otherwise.

false Disable the tracker.
page Enable the tracker in page mode. In this mode, tracking works on a

per-page basis.
spread Enable the tracker in spread mode. In this mode, tracking works on

a per-spread (double page) basis.

Note that this tracker is disabled in all floats, see § 4.11.5.

citecounter=true, false, context default: false

This option controls the citation counter which is required by citecounter from
§ 4.6.2. The possible choices are:

true Enable the citation counter in global mode.
false Disable the citation counter.
context Enable the citation counter in context-sensitive mode. In this mode,

citations in footnotes and in the body text are counted indepen-
dently.

citetracker=true, false, context, strict, constrict default: false

This option controls the citation tracker which is required by the \ifciteseen and
\ifentryseen tests from § 4.6.2. The possible choices are:

true Enable the tracker in global mode.
false Disable the tracker.
context Enable the tracker in context-sensitive mode. In this mode, citations

in footnotes and in the body text are tracked independently.
strict Enable the tracker in strict mode. In this mode, an item is only con-

sidered by the tracker if it appeared in a stand-alone citation, i. e., if
a single entry key was passed to the citation command.

constrict This mode combines the features of context and strict.

54

Note that this tracker is disabled in all floats, see § 4.11.5.

ibidtracker=true, false, context, strict, constrict default: false

This option controls the ‘ibidem’ tracker which is required by the \ifciteibid test
from § 4.6.2. The possible choices are:

true Enable the tracker in global mode.
false Disable the tracker.
context Enable the tracker in context-sensitive mode. In this mode, citations

in footnotes and in the body text are tracked separately.
strict Enable the tracker in strict mode. In this mode, potentially ambigu-

ous references are suppressed. A reference is considered ambiguous
if either the current citation (the one including the ‘ibidem’) or the
previous citation (the one the ‘ibidem’ refers to) consists of a list of
references.1

constrict This mode combines the features of context and strict. It also
keeps track of footnote numbers and detects potentially ambiguous
references in footnotes in a stricter way than the strict option. In
addition to the conditions imposed by the strict option, a reference
in a footnote will only be considered as unambiguous if the current
citation and the previous citation are given in the same footnote or
in immediately consecutive footnotes.

Note that this tracker is disabled in all floats, see § 4.11.5.

opcittracker=true, false, context, strict, constrict default: false

This option controls the ‘opcit’ tracker which is required by the \ifopcit test from
§ 4.6.2. This feature is similar to the ‘ibidem’ tracker, except that it tracks citations
on a per-author/editor basis, i. e., \ifopcit will yield true if the cited item is the
same as the last one by this author/editor. The possible choices are:

true Enable the tracker in global mode.
false Disable the tracker.
context Enable the tracker in context-sensitive mode. In this mode, citations

in footnotes and in the body text are tracked separately.
strict Enable the tracker in strict mode. In this mode, potentially ambigu-

ous references are suppressed. See ibidtracker=strict for details.
constrict This mode combines the features of context and strict. See the

explanation of ibidtracker=constrict for details.

Note that this tracker is disabled in all floats, see § 4.11.5.

1 For example, suppose the initial citation is “Jones, Title; Williams, Title” and the following one
“ibidem”. From a technical point of view, it is fairly clear that the ‘ibidem’ refers to ‘Williams’
because this is the last reference processed by the previous citation command. To a human reader,
however, this may not be obvious because the ‘ibidem’ may also refer to both titles. The strict
mode avoids such ambiguous references.

55

loccittracker=true, false, context, strict, constrict default: false

This option controls the ‘loccit’ tracker which is required by the \ifloccit test
from § 4.6.2. This feature is similar to the ‘opcit’ tracker except that it also checks
whether the 〈postnote〉 arguments match, i. e., \ifloccit will yield true if the
citation refers to the same page cited before. The possible choices are:

true Enable the tracker in global mode.
false Disable the tracker.
context Enable the tracker in context-sensitive mode. In this mode, citations

in footnotes and in the body text are tracked separately.
strict Enable the tracker in strict mode. In this mode, potentially ambigu-

ous references are suppressed. See ibidtracker=strict for details.
In addition to that, this mode also checks if the 〈postnote〉 argument
is numerical (based on \ifnumerals from § 4.6.2).

constrict This mode combines the features of context and strict. See the
explanation of ibidtracker=constrict for details. In addition to
that, this mode also checks if the 〈postnote〉 argument is numerical
(based on \ifnumerals from § 4.6.2).

Note that this tracker is disabled in all floats, see § 4.11.5.

idemtracker=true, false, context, strict, constrict default: false

This option controls the ‘idem’ tracker which is required by the \ifciteidem test
from § 4.6.2. The possible choices are:

true Enable the tracker in global mode.
false Disable the tracker.
context Enable the tracker in context-sensitive mode. In this mode, citations

in footnotes and in the body text are tracked separately.
strict This is an alias for true, provided only for consistency with the

other trackers. Since ‘idem’ replacements do not get ambiguous in
the same way as ‘ibidem’ or ‘op. cit.’, the strict tracking mode does
not apply to them.

constrict This mode is similar to context with one additional condition: a
reference in a footnote will only be considered as unambiguous if
the current citation and the previous citation are given in the same
footnote or in immediately consecutive footnotes.

Note that this tracker is disabled in all floats, see § 4.11.5.

parentracker=true, false default: true

This option controls the parenthesis tracker which keeps track of nested parenthe-
ses and brackets. This information is used by \parentext and \brackettext from
§ 3.6.5, \mkbibparens and \mkbibbrackets from § 4.10.4 and \bibopenparen,
\bibcloseparen, \bibopenbracket, \bibclosebracket (also § 4.10.4).

56

maxparens=〈integer〉 default: 3

The maximum permitted nesting level of parentheses and brackets. If parentheses
and brackets are nested deeper than this value, biblatex will issue errors.

firstinits=true, false default: false

When enabled, all first and middle names will be rendered as initials. The option
will aVect the \iffirstinits test from § 4.6.2.

terseinits=true, false default: false

This option controls the format of initials generated by biblatex. If enabled, ini-
tals are rendered using a terse format without dots and spaces. For example, the
initials of Donald Ervin Knuth would be rendered as ‘D. E.’ by default, and as ‘DE’
if this option is enabled. With Biber, the option works by redefining some macros Biber only

which control the format of initials. See § 3.11.4 for details.

labelalpha=true, false default: false

Whether or not to provide the special fields labelalpha and extraalpha, see
§ 4.2.4 for details. With Biber, this option is also settable on a per-type basis. See Biber only

also maxalphanames and minalphanames.

maxalphanames=〈integer〉 default: 3 Biber only

Similar to the maxnames option but customizes the format of the labelalpha field.

minalphanames=〈integer〉 default: 1 Biber only

Similar to the minnames option but customizes the format of the labelalpha field.

labelnumber=true, false default: false

Whether or not to provide the special field labelnumber, see § 4.2.4 for details.
This option is also settable on a per-type basis.

labelyear=true, false default: false

Whether or not to provide the special fields labelyear and extrayear, see § 4.2.4
for details. With Biber, this option is also settable on a per-type basis. Biber only

singletitle=true, false default: false

Whether or not to provide the data required by the \ifsingletitle test, see
§ 4.6.2 for details. With Biber, this option is also settable on a per-type basis. Biber only

uniquename=true, false, init, full, allinit, allfull, mininit,
minfull

default: false Biber only

Whether or not to update the uniquename counter, see § 4.6.2 for details. This
feature will disambiguate individual names in the labelname list. This option is
also settable on a per-type basis. The possible choices are:

true An alias for full.
false Disable this feature.

57

init Disambiguate names using initials only.
full Disambiguate names using initials or full names, as required.
allinit Similar to init but disambiguates all names in the labelname list,

beyond maxnames/minnames/uniquelist.
allfull Similar to full but disambiguates all names in the labelname list,

beyond maxnames/minnames/uniquelist.
mininit A variant of init which only disambiguates names in lists with iden-

tical last names.
minfull A variant of full which only disambiguates names in lists with iden-

tical last names.

Note that the uniquename option will also aVect uniquelist, the \ifsingletitle
test, and the extrayear field. See § 4.11.4 for further details and practical exam-
ples.

uniquelist=true, false, minyear default: false Biber only

Whether or not to update the uniquelist counter, see § 4.6.2 for details. This
feature will disambiguate the labelname list if it has become ambiguous after
maxnames/minnames truncation. Essentially, it overrides maxnames/minnames on a
per-field basis. This option is also settable on a per-type basis. The possible choices
are:

true Disambiguate the labelname list.
false Disable this feature.
minyear Disambiguate the labelname list only if the truncated list is identical

to another one with the same labelyear. This mode of operation is
useful for author-year styles and requires labelyear=true.

Note that the uniquelist option will also aVect the \ifsingletitle test and the
extrayear field. See § 4.11.4 for further details and practical examples. See § 4.11.4
for further details and practical examples.

3.1.3 Entry Options

Entry options are package options which can be adjusted on a per-entry basis in
the options field from § 2.2.3.

3.1.3.1 Preamble/Type/Entry Options

The following options are settable on a per-entry basis in the options field. In
addition to that, they may also be used in the optional argument to \usepackage
as well as in the configuration file and the document preamble. This is useful if
you want to change the default behavior globally.

useauthor=true, false default: true

Whether the author is used in labels and considered during sorting. This may
be useful if an entry includes an author field but is usually not cited by author
for some reason. Setting useauthor=false does not mean that the author is
ignored completely. It means that the author is not used in labels and ignored

58

during sorting. The entry will then be alphabetized by editor or title. With the
standard styles, the author is printed after the title in this case. See also § 3.4.
With Biber, this option is also settable on a per-type basis. Biber only

useeditor=true, false default: true

Whether the editor replaces a missing author in labels and during sorting. This
may be useful if an entry includes an editor field but is usually not cited by editor.
Setting useeditor=false does not mean that the editor is ignored completely.
It means that the editor does not replace a missing author in labels and during
sorting. The entry will then be alphabetized by title. With the standard styles,
the editor is printed after the title in this case. See also § 3.4. With Biber, this Biber only

option is also settable on a per-type basis.

usetranslator=true, false default: false

Whether the translator replaces a missing author/editor in labels and during
sorting. Setting usetranslator=true does not mean that the translator over-
rides the author/editor. It means that the translator is considered as a fall-
back if the author/editor is missing or if useauthor and useeditor are set to
false. In other words, in order to cite a book by translator rather than by author,
you need to set the following options: With Biber, this option is also settable on a Biber only

per-type basis.

@Book{...,
options = {useauthor=false,usetranslator=true},
author = {...},
translator = {...},
...

With the standard styles, the translator is printed after the title by default. See
also § 3.4.

useprefix=true, false default: false

Whether the name prefix (von, van, of, da, de, della, etc.) is considered when
printing the last name in citations. This also aVects the sorting and formatting
of the bibliography as well as the generation of certain types of labels. If this
option is enabled, biblatex always precedes the last name with the prefix. For
example, Ludwig van Beethoven would be cited as “Beethoven” and alphabetized
as “Beethoven, Ludwig van” by default. If this option is enabled, he is cited as “van
Beethoven” and alphabetized as “Van Beethoven, Ludwig” instead. With Biber, this Biber only

option is also settable on a per-type basis.

indexing=true, false, cite, bib

The indexing option is also settable per-type or per-entry basis. See § 3.1.2.1 for
details.

59

3.1.3.2 Type/Entry Options

The following options are only settable on a per-entry basis in the options field.
They are not available globally.

skipbib=true, false default: false

If this option is enabled, the entry is excluded from the bibliography but it may
still be cited. With Biber, this option is also settable on a per-type basis. Biber only

skiplos=true, false default: false

If this option is enabled, the entry is excluded from the list of shorthands. It is still
included in the bibliography and it may also be cited by shorthand. With Biber, Biber only

this option is also settable on a per-type basis.

skiplab=true, false default: false

If this option is enabled, biblatex will not assign any labels to the entry. It is
not required for normal operation. Use it with care. If enabled, biblatex can
not guarantee unique citations for the respective entry and citations styles which
require labels may fail to create valid citations for the entry. With Biber, this option Biber only

is also settable on a per-type basis.

dataonly=true, false default: false

Setting this option is equivalent to skipbib, skiplos, and skiplab. It is not re-
quired for normal operation. Use it with care. With Biber, this option is also set- Biber only

table on a per-type basis.

3.1.4 Legacy Options

The following legacy option may be used globally in the optional argument to
\documentclass or locally in the optional argument to \usepackage:

openbib This option is provided for backwards compatibility with the standard LaTeX doc- Deprecated

ument classes. openbib is similar to block=par.

3.2 Global Customization

Apart from writing new citation and bibliography styles, there are numerous ways
to customize the styles which ship with this package. Customization will usually
take place in the preamble, but there is also a configuration file for permanent
adaptions. The configuration file may also be used to initialize the package options
to a value diVerent from the package default.

3.2.1 Configuration File

If available, this package will load the configuration file biblatex.cfg. This file
is read at the end of the package, immediately after the citation and bibliography
styles have been loaded.

60

3.2.2 Setting Package Options

The load-time package options in § 3.1.1 must be given in the optional argument
to \usepackage. The package options in § 3.1.2 may also be given in the preamble.
The options are executed with the following command:

\ExecuteBibliographyOptions[〈entrytype, . . . 〉]{〈key=value, . . . 〉}

This command may also be used in the configuration file to modify the default
setting of a package option. Certain options are also settable on a per-type ba-
sis. In this case, the optional 〈entrytype〉 argument specifies the entry type. The
〈entrytype〉 argument may be a comma-separated list of values.

3.3 Standard Styles

This section provides a short description of all bibliography and citation styles
which ship with the biblatex package. If you want to write your own styles, see
§ 4.

3.3.1 Citation Styles

The citation styles which come with this package implement several common cita-
tion schemes. All standard styles cater for the shorthand field and support hyper-
links as well as indexing.

numeric This style implements a numeric citation scheme similar to the standard biblio-
graphic facilities of LaTeX. It should be employed in conjunction with a numeric
bibliography style which prints the corresponding labels in the bibliography. It is
intended for in-text citations. The style will set the following package options at
load time: autocite=inline, labelnumber=true. This style also provides an ad-
ditional preamble option called subentry which aVects the handling of entry sets.
If this option is disabled, citations referring to a member of a set will point to the
entire set. If it is enabled, the style supports citations like “[5c]” which point to a
subentry in a set (the third one in this example). See the style example for details.

numeric-comp A compact variant of the numeric style which prints a list of more than two con-
secutive numbers as a range. This style is similar to the cite package and the
sort&compress option of the natbib package in numerical mode. For example, in-
stead of “[8, 3, 1, 7, 2]” this style would print “[1–3, 7, 8]”. It is intended for in-text
citations. The style will set the following package options at load time: autocite=
inline, sortcites=true, labelnumber=true. It also provides the subentry op-
tion.

numeric-verb A verbose variant of the numeric style. The diVerence aVects the handling of a list
of citations and is only apparent when multiple entry keys are passed to a single
citation command. For example, instead of “[2, 5, 6]” this style would print “[2];
[5]; [6]”. It is intended for in-text citations. The style will set the following package
options at load time: autocite=inline, labelnumber=true. It also provides the
subentry option.

alphabetic This style implements an alphabetic citation scheme similar to the alpha.bst

61

style of traditional BibTeX. The alphabetic labels resemble a compact author-year
style to some extent, but the way they are employed is similar to a numeric cita-
tion scheme. For example, instead of “Jones 1995” this style would use the label
“[Jon95]”. “Jones and Williams 1986” would be rendered as “[JW86]”. This style
should be employed in conjunction with an alphabetic bibliography style which
prints the corresponding labels in the bibliography. It is intended for in-text cita-
tions. The style will set the following package options at load time: autocite=
inline, labelalpha=true.

alphabetic-verb A verbose variant of the alphabetic style. The diVerence aVects the handling of
a list of citations and is only apparent when multiple entry keys are passed to a
single citation command. For example, instead of “[Doe92; Doe95; Jon98]” this
style would print “[Doe92]; [Doe95]; [Jon98]”. It is intended for in-text citations.
The style will set the following package options at load time: autocite=inline,
labelalpha=true.

authoryear This style implements an author-year citation scheme. If the bibliography contains
two or more works by the same author which were all published in the same year, a
letter is appended to the year. For example, this style would print citations such as
“Doe 1995a; Doe 1995b; Jones 1998”. This style should be employed in conjunction
with an author-year bibliography style which prints the corresponding labels in the
bibliography. It is primarily intended for in-text citations, but it could also be used
with citations given in footnotes. The style will set the following package options at
load time: autocite=inline, labelyear=true, uniquename=full, uniquelist=
true.

authoryear-comp A compact variant of the authoryear style which prints the author only once if
subsequent references passed to a single citation command share the same author.
If they share the same year as well, the year is also printed only once. For example,
instead of “Doe 1995b; Doe 1992; Jones 1998; Doe 1995a” this style would print
“Doe 1992, 1995a,b; Jones 1998”. It is primarily intended for in-text citations, but it
could also be used with citations given in footnotes. The style will set the following
package options at load time: autocite=inline, sortcites=true, labelyear=
true, uniquename=full, uniquelist=true.

authoryear-ibid A variant of the authoryear style which replaces repeated citations by the abbrevi-
ation ibidem unless the citation is the first one on the current page or double-page
spread, or the ibidem would be ambiguous in the sense of the package option
ibidtracker=constrict. The style will set the following package options at load
time: autocite=inline, labelyear=true, uniquename=full, uniquelist=true,
ibidtracker=constrict, pagetracker=true. This style also provides an addi-
tional preamble option called ibidpage. See the style example for details.

authoryear-icomp A style combining authoryear-comp and authoryear-ibid. The style will set
the following package options at load time: autocite=inline, labelyear=true,
uniquename=full, uniquelist=true, ibidtracker=constrict, pagetracker=
true, sortcites=true. This style also provides an additional preamble option
called ibidpage. See the style example for details.

62

authortitle This style implements a simple author-title citation scheme. It will make use of
the shorttitle field, if available. It is intended for citations given in footnotes.
The style will set the following package options at load time: autocite=footnote,
uniquename=full, uniquelist=true.

authortitle-comp A compact variant of the authortitle style which prints the author only once if
subsequent references passed to a single citation command share the same author.
For example, instead of “Doe, First title; Doe, Second title” this style would print
“Doe, First title, Second title”. It is intended for citations given in footnotes. The
style will set the following package options at load time: autocite=footnote,
sortcites=true, uniquename=full, uniquelist=true.

authortitle-ibid A variant of the authortitle style which replaces repeated citations by the abbre-
viation ibidem unless the citation is the first one on the current page or double-
page spread, or the ibidem would be ambiguous in the sense of the package op-
tion ibidtracker=constrict. It is intended for citations given in footnotes. The
style will set the following package options at load time: autocite=footnote,
uniquename=full, uniquelist=true, ibidtracker=constrict, pagetracker=
true. This style also provides an additional preamble option called ibidpage. See
the style example for details.

authortitle-icomp A style combining the features of authortitle-comp and authortitle-ibid. The
style will set the following package options at load time: autocite=footnote,
uniquename=full, uniquelist=true, ibidtracker=constrict, pagetracker=
true, sortcites=true. This style also provides an additional preamble option
called ibidpage. See the style example for details.

authortitle-terse A terse variant of the authortitle style which only prints the title if the bibliogra-
phy contains more than one work by the respective author/editor. This style will
make use of the shorttitle field, if available. It is suitable for in-text citations
as well as citations given in footnotes. The style will set the following package
options at load time: autocite=inline, singletitle=true, uniquename=full,
uniquelist=true.

authortitle-tcomp A style combining the features of authortitle-comp and authortitle-terse.
This style will make use of the shorttitle field, if available. It is suitable for in-
text citations as well as citations given in footnotes. The style will set the following
package options at load time: autocite=inline, sortcites=true, singletitle=
true, uniquename=full, uniquelist=true.

authortitle-ticomp A style combining the features of authortitle-icomp and authortitle-terse.
In other words: a variant of the authortitle-tcomp style with an ibidem fea-
ture. This style is suitable for in-text citations as well as citations given in foot-
notes. It will set the following package options at load time: autocite=inline,
ibidtracker=constrict, pagetracker=true, sortcites=true, singletitle=
true, uniquename=full, uniquelist=true. This style also provides an additional
preamble option called ibidpage. See the style example for details.

verbose A verbose citation style which prints a full citation similar to a bibliography entry

63

when an entry is cited for the first time, and a short citation afterwards. If avail-
able, the shorttitle field is used in all short citations. If the shorthand field is
defined, the shorthand is introduced on the first citation and used as the short
citation thereafter. This style may be used without a list of references and short-
hands since all bibliographic data is provided on the first citation. It is intended
for citations given in footnotes. The style will set the following package options at
load time: autocite=footnote, citetracker=context. This style also provides
an additional preamble option called citepages. See the style example for details.

verbose-ibid A variant of the verbose style which replaces repeated citations by the abbrevia-
tion ibidem unless the citation is the first one on the current page or double-page
spread, or the ibidem would be ambiguous in the sense of ibidtracker=strict.
This style is intended for citations given in footnotes. The style will set the follow-
ing package options at load time: autocite=footnote, citetracker=context,
ibidtracker=constrict, pagetracker=true. This style also provides additional
preamble options called ibidpage and citepages. See the style example for de-
tails.

verbose-note This style is similar to the verbose style in that it prints a full citation similar to
a bibliography entry when an entry is cited for the first time, and a short citation
afterwards. In contrast to the verbose style, the short citation is a pointer to the
footnote with the full citation. If the bibliography contains more than one work
by the respective author/editor, the pointer also includes the title. If available, the
shorttitle field is used in all short citations. If the shorthand field is defined,
it is handled as with the verbose style. This style may be used without a list
of references and shorthands since all bibliographic data is provided on the first
citation. It is exclusively intended for citations given in footnotes. The style will set
the following package options at load time: autocite=footnote, citetracker=
context, singletitle=true. This style also provides additional preamble options
called pageref and citepages. See the style example for details.

verbose-inote A variant of the verbose-note style which replaces repeated citations by the abbre-
viation ibidem unless the citation is the first one on the current page or double-page
spread, or the ibidem would be ambiguous in the sense of ibidtracker=strict.
This style is exclusively intended for citations given in footnotes. It will set the fol-
lowing package options at load time: autocite=footnote, citetracker=context,
ibidtracker=constrict, singletitle=true, pagetracker=true. This style also
provides additional preamble options called ibidpage, pageref, and citepages.
See the style example for details.

verbose-trad1 This style implements a traditional citation scheme. It is similar to the verbose
style in that it prints a full citation similar to a bibliography entry when an item
is cited for the first time, and a short citation afterwards. Apart from that, it uses
the scholarly abbreviations ibidem, idem, op. cit., and loc. cit. to replace recurrent
authors, titles, and page numbers in repeated citations in a special way. If the
shorthand field is defined, the shorthand is introduced on the first citation and
used as the short citation thereafter. This style may be used without a list of refer-
ences and shorthands since all bibliographic data is provided on the first citation. It

64

is intended for citations given in footnotes. The style will set the following package
options at load time: autocite=footnote, citetracker=context, ibidtracker=
constrict, idemtracker=constrict, opcittracker=context, loccittracker=
context. This style also provides additional preamble options called ibidpage,
strict, and citepages. See the style example for details.

verbose-trad2 Another traditional citation scheme. It is also similar to the verbose style but uses
scholarly abbreviations like ibidem and idem in repeated citations. In contrast to
the verbose-trad1 style, the logic of the op. cit. abbreviations is diVerent in this
style and loc. cit. is not used at all. It is in fact more similar to verbose-ibid and
verbose-inote than to verbose-trad1. The style will set the following package
options at load time: autocite=footnote, citetracker=context, ibidtracker=
constrict, idemtracker=constrict. This style also provides additional pream-
ble options called ibidpage, strict, and citepages. See the style example for
details.

verbose-trad3 Yet another traditional citation scheme. It is similar to the verbose-trad2 style
but uses the scholarly abbreviations ibidem and op. cit. in a slightly diVerent way.
The style will set the following package options at load time: autocite=footnote,
citetracker=context, ibidtracker=constrict, loccittracker=constrict.
This style also provides additional preamble options called strict and citepages.
See the style example for details.

reading A citation style which goes with the bibliography style by the same name. It simply
loads the authortitle style.

The following citation styles are special purpose styles. They are not intended for
the final version of a document:

draft A draft style which uses the entry keys in citations. The style will set the following
package options at load time: autocite=plain.

debug This style prints the entry key rather than some kind of label. It is intended for
debugging only and will set the following package options at load time: autocite=
plain.

3.3.2 Bibliography Styles

All bibliography styles which come with this package use the same basic format
for the individual bibliography entries. They only diVer in the kind of label printed
in the bibliography and the overall formatting of the list of references. There is a
matching bibliography style for every citation style. Note that some bibliography
styles are not mentioned below because they simply load a more generic style.
For example, the bibligraphy style authortitle-comp will load the authortitle
style.

numeric This style prints a numeric label similar to the standard bibliographic facilities of
LaTeX. It is intended for use in conjunction with a numeric citation style. Note that
the shorthand field overrides the default label. The style will set the following
package options at load time: labelnumber=true. This style also provides an addi-

65

tional preamble option called subentry which aVects the formatting of entry sets.
If this option is enabled, all members of a set are marked with a letter which may
be used in citations referring to a set member rather than the entire set. See the
style example for details.

alphabetic This style prints an alphabetic label similar to the alpha.bst style of traditional
BibTeX. It is intended for use in conjunction with an alphabetic citation style. Note
that the shorthand field overrides the default label. The style will set the following
package options at load time: labelalpha=true, sorting=anyt.

authoryear This style diVers from the other styles in that the publication date is not printed
towards the end of the entry but rather after the author/editor. It is intended
for use in conjunction with an author-year citation style. Recurring author and
editor names are replaced by a dash unless the entry is the first one on the cur-
rent page or double-page spread. This style provides an additional preamble option
called dashed which controls this feature. It also provided a preamble option called
mergedate. See the style example for details. The style will set the following pack-
age options at load time: labelyear=true, sorting=nyt, pagetracker=true,
mergedate=true.

authortitle This style does not print any label at all. It is intended for use in conjunction with
an author-title citation style. Recurring author and editor names are replaced by
a dash unless the entry is the first one on the current page or double-page spread.
This style also provides an additional preamble option called dashed which con-
trols this feature. See the style example for details. The style will set the following
package options at load time: pagetracker=true.

verbose This style is similar to the authortitle style. It also provides an additional pream-
ble option called dashed. See the style example for details. The style will set the
following package options at load time: pagetracker=true.

reading This special bibliography style is designed for personal reading lists, annotated bib-
liographies, and similar applications. It optionally includes the fields annotation,
abstract, library, and file in the bibliography. If desired, it also adds vari-
ous kinds of short headers to the bibliography. This style also provides the addi-
tional preamble options entryhead, entrykey, annotation, abstract, library,
and file which control whether or not the corresponding items are printed in the
bibliography. See the style example for details. See also § 3.10.7. The style will set
the following package options at load time: loadfiles=true, entryhead=true,
entrykey=true, annotation=true, abstract=true, library=true, file=true.

The following bibliography styles are special purpose styles. They are not intended
for the final version of a document:

draft This draft style includes the entry keys in the bibliography. The bibligraphy will be
sorted by entry key. The style will set the following package options at load time:
sorting=debug.

debug This style prints all bibliographic data in tabular format. It is intended for debug-
ging only and will set the following package options at load time: sorting=debug.

66

3.4 Sorting Options

This package supports various sorting schemes for the bibliography. The sorting
scheme is selected with the sorting package option from § 3.1.2.1. Apart from
the regular data fields there are also some special fields which may be used to
optimize the sorting of the bibliography. Appendices b1 and b2 give an outline
of the alphabetic sorting schemes supported by biblatex. Chronological sorting
schemes are listed in appendix b3. A few explanations concerning these schemes
are in order.

The first item considered in the sorting process is always the presort field of
the entry. If this field is undefined, biblatex will use the default value ‘mm’ as a pre-
sort string. The next item considered is the sortkey field. If this field is defined, it
serves as the master sort key. Apart from the presort field, no further data is con-
sidered in this case. If the sortkey field is undefined, sorting continues with the
name. The package will try using the sortname, author, editor, and translator
fields, in this order. Which fields are considered also depends on the setting of
the useauthor, useeditor, and usetranslator options. If all three of them are
disabled, the sortname field is ignored as well. Note that all name fields are re-
sponsive to maxnames and minnames. If no name field is available, either because
all of them are undefined or because useauthor, useeditor, and usetranslator
are disabled, biblatex will fall back to the sorttitle and title fields as a last
resort. The remaining items are, in various order: the sortyear field, if defined,
or the first four digits of the year field otherwise; the sorttitle field, if defined,
or the title field otherwise; the volume field, which is padded to four digits
with leading zeros, or the string 0000 otherwise. Note that the sorting schemes
shown in appendix b2 include an additional item: labelalpha is the label used
by ‘alphabetic’ bibliography styles. Strictly speaking, the string used for sorting is
labelalpha + extraalpha. The sorting schemes in appendix b2 are intended to
be used in conjunction with alphabetic styles only.

The chronological sorting schemes presented in appendix b3 also make use
of the presort and sortkey fields, if defined. The next item considered is the
sortyear or the year field, depending on availability. The ynt scheme extracts
the first four Arabic figures from the field. If both fields are undefined, the string
9999 is used as a fallback value. This means that all entries without a year will
be moved to the end of the list. The ydnt scheme is similar in concept but sorts
the year in descending order. As with the ynt scheme, the string 9999 is used as a
fallback value. The remaining items are similar to the alphabetic sorting schemes
discussed above. Note that the ydnt sorting scheme will only sort the date in
descending order. All other items are sorted in ascending order as usual.

Using special fields such as sortkey, sortname, or sorttitle is usually not
required. The biblatex package is quite capable of working out the desired sorting
order by using the data found in the regular fields of an entry. You will only need
them if you want to manually modify the sorting order of the bibliography or if any
data required for sorting is missing. Please refer to the field descriptions in § 2.2.3
for details on possible uses of the special fields. Also note that using bibtex8 or
Biber instead of legacy bibtex is strongly recommended.

67

3.5 Bibliography Commands

3.5.1 Resources

\addbibresource[〈options〉]{〈resource〉}

Adds a 〈resource〉, such as a .bib file, to the default resource list. This command
is only available in the preamble. It replaces the \bibliography legacy command.
Note that files must be specified with their full name, including the extension. Do
not omit the .bib extension from the filename. Also note that the 〈resource〉 is a
single resource. Invoke \addbibresource multiple times to add more resources,
for example:

\addbibresource{bibfile1.bib}
\addbibresource{bibfile2.bib}
\addbibresource[location=remote]{http://www.citeulike.org/bibtex/group/9517}
\addbibresource[location=remote,label=lan]{ftp://192.168.1.57/~user/file.bib}

Since the 〈resource〉 string is read in a verbatim-like mode, it may contain arbitrary
characters. The only restriction is that any curly braces must be balanced. The
following 〈options〉 are available:

label=〈identifier〉

Assigns a label to a resource. The 〈identifier〉 may be used in place of the full
resource name in the optional argument of refsection (see 3.5.4).

location=〈location〉 default: local

The location of the resource. The 〈location〉 may be either local for local resources
or remote for urls. Remote resources require Biber. The protocols http and ftp

are supported. The remote url must be a fully qualified path to a bib file or a url

which returns a bib file.

type=〈type〉 default: file

The type of resource. Currently, the only supported type is file.

datatype=〈datatype〉 default: bibtex

The data type (format) of the resource. The following formats are currently sup-
ported:

bibtex BibTeX format.
ris Research Information Systems (ris) format.1 Note that an ID tag Biber only

is required in all ris records. The ID value corresponds to the entry
key. Support for this format is experimental.

zoterordfxml Zotero rdf/xml format. Support for this format is experimental. Biber only

Refer to the Biber manual for details.
endnotexml EndNote xml format. Support for this format is experimental. Re- Biber only

fer to the Biber manual for details.

1 http://en.wikipedia.org/wiki/RIS_(file_format)

68

http://en.wikipedia.org/wiki/RIS_(file_format)

\addglobalbib[〈options〉]{〈resource〉}

This command diVers from \addbibresource in that the 〈resource〉 is added to the
global resource list. The diVerence between default resources and global resources
is only relevant if there are reference sections in the document and the optional
argument of refsection (§ 3.5.4) is used to specify alternative resources which
replace the default resource list. Any global resources are added to all reference
sections.

\addsectionbib[〈options〉]{〈resource〉}

This command diVers from \addbibresource in that the resource 〈options〉 are
registered but the 〈resource〉 not added to any resource list. This is only required for
resources which 1) are given exclusively in the optional argument of refsection
(3.5.4) and 2) require options diVerent from the default settings. In this case,
\addsectionbib is employed to qualify the 〈resource〉 prior to using it by setting
the appropriate 〈options〉 in the preamble. The label option may be useful to as-
sign a short name to the resource.

\bibliography{〈bibfile, . . . 〉} Deprecated

The legacy command for adding bibliographic resources, supported for backwards
compatibility. Like \addbibresource, this command is only available in the pream-
ble and adds resources to the default resource list. Its argument is a comma-sepa-
rated list of bib files. The .bib extension may be omitted from the filename. Invok-
ing this command multiple times to add more files is permissible. This command
is deprecated. Please consider using \addbibresource instead.

3.5.2 The Bibliography

\printbibliography[〈key=value, . . . 〉]

This command prints the bibliography. It takes one optional argument, which is a
list of options given in 〈key〉=〈value〉 notation. The following options are available:

env=〈name〉 default: bibliography/shorthands

The ‘high-level’ layout of the bibliography and the list of shorthands is controlled
by enviroments defined with \defbibenvironment. This option selects an environ-
ment. The 〈name〉 corresponds to the identifier used when defining the environ-
ment with \defbibenvironment. By default, the \printbibliography command
uses the identifier bibliography; \printshorthands uses shorthands. See also
§§ 3.5.3 and 3.5.7.

heading=〈name〉 default: bibliography/shorthands

The bibliography and the list of shorthands typically have a chapter or section
heading. This option selects the heading 〈name〉, as defined with \defbibheading.
By default, the \printbibliography command uses the heading bibliography;
\printshorthands uses shorthands. See also §§ 3.5.3 and 3.5.7.

69

title=〈text〉

This option overrides the default title provided by the heading selected with the
heading option, if supported by the heading definition. See § 3.5.7 for details.

prenote=〈name〉

The prenote is an arbitrary piece of text to be printed after the heading but be-
fore the list of references. This option selects the prenote 〈name〉, as defined with
\defbibnote. By default, no prenote is printed. The note is printed in the standard
text font. It is not aVected by \bibsetup and \bibfont but it may contain its own
font declarations. See § 3.5.8 for details.

postnote=〈name〉

The postnote is an arbitrary piece of text to be printed after the list of references.
This option selects the postnote 〈name〉, as defined with \defbibnote. By default,
no postnote is printed. The note is printed in the standard text font. It is not af-
fected by \bibsetup and \bibfont but it may contain its own font declarations.
See § 3.5.8 for details.

section=〈integer〉 default: 0

Print only entries cited in reference section 〈integer〉. The reference sections are
numbered starting at 1. All citations given outside a refsection environment are
assigned to section 0. See § 3.5.4 for details and § 3.10.3 for usage examples. When
giving a chain of multiple filters, the section filter must always be given first.

segment=〈integer〉 default: 0

Print only entries cited in reference segment 〈integer〉. The reference segments are
numbered starting at 1. All citations given outside a refsegment environment are
assigned to segment 0. See § 3.5.5 for details and § 3.10.3 for usage examples.

type=〈entrytype〉

Print only entries whose entry type is 〈entrytype〉.

nottype=〈entrytype〉

Print only entries whose entry type is not 〈entrytype〉. This option may be used
multiple times.

subtype=〈subtype〉

Print only entries whose entrysubtype is defined and 〈subtype〉.

notsubtype=〈subtype〉

Print only entries whose entrysubtype is undefined or not 〈subtype〉. This option
may be used multiple times.

70

keyword=〈keyword〉

Print only entries whose keywords field includes 〈keyword〉. This option may be
used multiple times.

notkeyword=〈keyword〉

Print only entries whose keywords field does not include 〈keyword〉. This option
may be used multiple times.

category=〈category〉

Print only entries assigned to category 〈category〉. This option may be used multi-
ple times.

notcategory=〈category〉

Print only entries not assigned to category 〈category〉. This option may be used
multiple times.

filter=〈name〉

Filter the entries with filter 〈name〉, as defined with \defbibfilter. See § 3.5.9
for details.

check=〈name〉

Filter the entries with check 〈name〉, as defined with \defbibcheck. See § 3.5.9
for details.

prefixnumbers=〈string〉

This option applies to numerical citation/bibliography styles only and requires that
the defernumbers option from § 3.1.2.1 be enabled globally. Setting this option will
implicitly enable resetnumbers for the current bibliography. The option assigns
the 〈string〉 as a prefix to all entries in the respective bibliography. For example, if
the 〈string〉 is A, the numerical labels printed will be [A1], [A2], [A3], etc. This is
useful for subdivided numerical bibliographies where each subbibliography uses a
diVerent prefix. The 〈string〉 is available to styles in the prefixnumber field of all
aVected entries. See § 4.2.4.2 for details.

resetnumbers=true, false

This option applies to numerical citation/bibliography styles only and requires that
the defernumbers option from § 3.1.2.1 be enabled globally. If enabled, it will reset
the numerical labels assigned to the entries in the respective bibliography, i. e.,
the numbering will restart at 1. Use this option with care as biblatex can not
guarantee unique labels globally if they are reset manually.

omitnumbers=true, false

This option applies to numerical citation/bibliography styles only and requires that
the defernumbers option from § 3.1.2.1 be enabled globally. If enabled, biblatex
will not assign a numerical label to the entries in the respective bibliography. This

71

is useful when mixing a numerical subbibliography with one or more subbibliogra-
phies using a diVerent scheme (e. g., author-title or author-year).

\bibbysection[〈key=value, . . . 〉]

This command automatically loops over all reference sections. This is equivalent
to giving one \printbibliography command for every section but has the ad-
ditional benefit of automatically skipping sections without references. Note that
\bibbysection starts looking for references in section 1. It will ignore references
given outside of refsection environments since they are assigned to section 0.
See § 3.10.3 for usage examples. The options are a subset of those supported by
\printbibliography. Valid options are env, heading, prenote, postnote.

\bibbysegment[〈key=value, . . . 〉]

This command automatically loops over all reference segments. This is equivalent
to giving one \printbibliography command for every segment but has the ad-
ditional benefit of automatically skipping segments without references. Note that
\bibbysegment starts looking for references in segment 1. It will ignore references
given outside of refsegment environments since they are assigned to segment 0.
See § 3.10.3 for usage examples. The options are a subset of those supported by
\printbibliography. Valid options are env, heading, prenote, postnote.

\bibbycategory[〈key=value, . . . 〉]

This command loops over all bibliography categories. This is equivalent to giv-
ing one \printbibliography command for every category but has the additional
benefit of automatically skipping empty categories. The categories are processed
in the order in which they were declared. See § 3.10.3 for usage examples. The op-
tions are a subset of those supported by \printbibliography. Valid options are
env, prenote, postnote, section. Note that heading is not available with this
command. The name of the current category is automatically used as the heading
name. This is equivalent to passing heading=〈category〉 to \printbibliography
and implies that there must be a matching heading definition for every category.

\printbibheading[〈key=value, . . . 〉]

This command prints a bibliography heading defined with \defbibheading. It
takes one optional argument, which is a list of options given in 〈key〉=〈value〉 nota-
tion. The options are a small subset of those supported by \printbibliography.
Valid options are heading and title. By default, this command uses the head-
ing bibliography. See § 3.5.7 for details. Also see §§ 3.10.3 and 3.10.4 for usage
examples.

3.5.3 The List of Shorthands

If any entry includes a shorthand field, biblatex automatically builds a list of
shorthands which may be printed in addition to the regular bibliography. The
following command prints the list of shorthands.

72

\printshorthands[〈key=value, . . . 〉]

This command prints the list of shorthands. It takes one optional argument, which
is a list of options given in 〈key〉=〈value〉 notation. Valid options are all options sup-
ported by \printbibliography (§ 3.5.2) except prefixnumbers, resetnumbers,
and omitnumbers. If there are any refsection environments in the document,
the list of shorthands will be local to these environments; see § 3.5.4 for details. By
default, this command uses the heading shorthands. See § 3.5.7 for details.

3.5.4 Bibliography Sections

The refsection environment is used in the document body to mark a reference
section. This environment is useful if you want separate, independent bibliogra-
phies and lists of shorthands in each chapter, section, or any other part of a doc-
ument. Within a reference section, all cited works are assigned labels which are
local to the environment. Technically, reference sections are completely indepen-
dent from document divisions such as \chapter and \section even though they
will most likely be used per chapter or section. See the refsection package option
in § 3.1.2.1 for a way to automate this. Also see § 3.10.3 for usage examples.

\begin{refsection}[〈resource, . . . 〉]
\end{refsection}

The optional argument is a comma-separated list of resources specific to the ref-
erence section. If the argument is omitted, the reference section will use the de-
fault resource list, as specified with \addbibresource in the preamble. If the ar-
gument is provided, it replaces the default resource list. Global resources specified
with \addglobalbib are always considered. refsection environments may not
be nested, but you may use refsegment environments within a refsection to
subdivide it into segments. Use the section option of \printbibliography to
select a section when printing the bibliography, and the corresponding option of
\printshorthands when printing the list of shorthands. Bibliography sections are
numbered starting at 1. The number of the current section is also written to the
transcript file. All citations given outside a refsection environment are assigned
to section 0. If \printbibliography is used within a refsection, it will automat-
ically select the current section. The section option is not required in this case.
This also applies to \printshorthands.

\newrefsection[〈resource, . . . 〉]

This command is similar to the refsection environment except that it is a stand-
alone command rather than an environment. It automatically ends the previous
reference section (if any) and immediately starts a new one. Note that the refer-
ence section started by the last \newrefsection command in the document will
extend to the very end of the document. Use \endrefsection if you want to ter-
minate it earlier.

73

3.5.5 Bibliography Segments

The refsegment environment is used in the document body to mark a reference
segment. This environment is useful if you want one global bibliography which
is subdivided by chapter, section, or any other part of the document. Technically,
reference segments are completely independent from document divisions such as
\chapter and \section even though they will typically be used per chapter or
section. See the refsegment package option in § 3.1.2.1 for a way to automate this.
Also see § 3.10.3 for usage examples.

\begin{refsegment}
\end{refsegment}

The diVerence between a refsection and a refsegment environment is that the
former creates labels which are local to the environment whereas the latter pro-
vides a target for the segment filter of \printbibliography without aVecting
the labels. They will be unique across the entire document. refsegment environ-
ments may not be nested, but you may use them in conjunction with refsection
to subdivide a reference section into segments. In this case, the segments are
local to the enclosing refsection environment. Use the refsegment option of
\printbibliography to select a segment when printing the bibliography. The ref-
erence segments are numbered starting at 1 and the number of the current seg-
ment will be written to the transcript file. All citations given outside a refsegment
environment are assigned to segment 0. In contrast to the refsection environ-
ment, the current segment is not selected automatically if \printbibliography is
used within a refsegment environment.

\newrefsegment This command is similar to the refsegment environment except that it is a stand-
alone command rather than an environment. It automatically ends the previous
reference segment (if any) and immediately starts a new one. Note that the ref-
erence segment started by the last \newrefsegment command will extend to the
end of the document. Use \endrefsegment if you want to terminate it earlier.

3.5.6 Bibliography Categories

Bibliography categories allow you to split the bibliography into multiple parts ded-
icated to diVerent topics or diVerent types of references, for example primary and
secondary sources. See § 3.10.4 for usage examples.

\DeclareBibliographyCategory{〈category〉}

Declares a new 〈category〉, to be used in conjunction with \addtocategory and
the category and notcategory filters of \printbibliography. This command is
used in the document preamble.

\addtocategory{〈category〉}{〈key〉}

Assigns a 〈key〉 to a 〈category〉, to be used in conjunction with the category and
notcategory filters of \printbibliography. This command may be used in the
preamble and in the document body. The 〈key〉 may be a single entry key or a
comma-separated list of keys. The assignment is global.

74

3.5.7 Bibliography Headings and Environments

\defbibenvironment{〈name〉}{〈begin code〉}{〈end code〉}{〈item code〉}

This command defines bibliography environments. The 〈name〉 is an identifier
passed to the env option of \printbibliography and \printshorthands when
selecting the environment. The 〈begin code〉 is LaTeX code to be executed at the
beginning of the environment; the 〈end code〉 is executed at the end of the envi-
ronment; the 〈item code〉 is code to be executed at the beginning of each entry in
the bibliography or the list of shorthands. Here is an example of a definition based
on the standard LaTeX list environment:

\defbibenvironment{bibliography}
{\list{}

{\setlength{\leftmargin}{\bibhang}%
\setlength{\itemindent}{-\leftmargin}%
\setlength{\itemsep}{\bibitemsep}%
\setlength{\parsep}{\bibparsep}}}

{\endlist}
{\item}

As seen in the above example, usage of \defbibenvironment is roughly similar to
\newenvironment except that there is an additional mandatory argument for the
〈item code〉.

\defbibheading{〈name〉}[〈title〉]{〈code〉}

This command defines bibliography headings. The 〈name〉 is an identifier to be
passed to the heading option of \printbibliography or \printbibheading and
\printshorthands when selecting the heading. The 〈code〉 should be LaTeX code
generating a fully-fledged heading, including page headers and an entry in the
table of contents, if desired. If \printbibliography or \printshorthands are
invoked with a title option, the title will be passed to the heading definition as
#1. If not, the default title specified by the optional 〈title〉 argument is passed as #1
instead. The 〈title〉 argument will typically be \bibname, \refname, or \losname
(see § 4.9.2.1). Here is an example of a simple heading definition:

\defbibheading{bibliography}[\bibname]{%
\chapter*{#1}%
\markboth{#1}{#1}}

The following headings, which are intended for use with \printbibliography
and \printbibheading, are predefined:

bibliography

This is the default heading used by \printbibliography if the heading option is
not given. Its default definition depends on the document class. If the class pro-
vides a \chapter command, the heading is similar to the bibliography heading
of the standard LaTeX book class, i. e., it uses \chapter* to create an unnum-
bered chapter heading which is not included in the table of contents. If there is no

75

\chapter command, it is similar to the bibliography heading of the standard LaTeX
article class, i. e., it uses \section* to create an unnumbered section heading
which is not included in the table of contents. The string used in the heading
also depends on the document class. With book-like classes the localization string
bibliography is used, with other classes it is references (see § 4.9.2). See also
§§ 3.11.1 and 3.11.2 for class-specific hints.

subbibliography

Similar to bibliography but one sectioning level lower. This heading definition
uses \section* instead of \chapter* with a book-like class and \subsection*
instead of \section* otherwise.

bibintoc

Similar to bibliography above but adds an entry to the table of contents.

subbibintoc

Similar to subbibliography above but adds an entry to the table of contents.

bibnumbered

Similar to bibliography above but uses \chapter or \section to create a num-
bered heading which is also added to the table of contents.

subbibnumbered

Similar to subbibliography above but uses \section or \subsection to create a
numbered heading which is also added to the table of contents.

none

A blank heading definition. Use this to suppress the heading.

The following headings intended for use with \printshorthands are predefined:

shorthands

This is the default heading used by \printshorthands if the heading option is
not given. It is similar to bibliography above except that it uses the localization
string shorthands instead of bibliography or references (see § 4.9.2). See also
§§ 3.11.1 and 3.11.2 for class-specific hints.

losintoc

Similar to shorthands above but adds an entry to the table of contents.

losnumbered

Similar to shorthands above but uses \chapter or \section to create a numbered
heading which is also added to the table of contents.

76

3.5.8 Bibliography Notes

\defbibnote{〈name〉}{〈text〉}

Defines the bibliography note 〈name〉, to be used via the prenote and postnote
options of \printbibliography and \printshorthands. The 〈text〉 may be any
arbitrary piece of text, possibly spanning several paragraphs and containing font
declarations. Also see § 3.11.6.

3.5.9 Bibliography Filters and Checks

\defbibfilter{〈name〉}{〈expression〉}

Defines the custom bibliography filter 〈name〉, to be used via the filter option
of \printbibliography. The 〈expression〉 is a complex test based on the logical
operators and, or, not, the group separator (...), and the following atomic tests:

segment=〈integer〉

Matches all entries cited in reference segment 〈integer〉.

type=〈entrytype〉

Matches all entries whose entry type is 〈entrytype〉.

subtype=〈subtype〉

Matches all entries whose entrysubtype is 〈subtype〉.

keyword=〈keyword〉

Matches all entries whose keywords field includes 〈keyword〉. If the 〈keyword〉
contains spaces, it needs to be wrapped in braces.

category=〈category〉

Matches all entries assigned to 〈category〉 with \addtocategory.

Here is an example of a filter expression:

\defbibfilter{example}{%
(type=book or type=inbook)
and keyword=abc
and not keyword={x y z}

}

This filter will match all entries whose entry type is either @book or @inbook and
whose keywords field includes the keyword ‘abc’ but not ‘x y z’. As seen in the
above example, all elements are separated by whitespace (spaces, tabs, or line
endings). There is no spacing around the equal sign. The logical operators are
evaluated with the \ifboolexpr command from the etoolbox package. See the
etoolbox manual for details about the syntax. The syntax of the \ifthenelse
command from the ifthen package, which has been employed in older versions
of biblatex, is still supported. This is the same test using ifthen-like syntax:

\defbibfilter{example}{%

77

\(\type{book} \or \type{inbook} \)
\and \keyword{abc}
\and \not \keyword{x y z}

}

Note that custom filters are local to the reference section in which they are used.
Use the section filter of \printbibliography to select a diVerent section. This is
not possible from within a custom filter.

\defbibcheck{〈name〉}{〈code〉}

Defines the custom bibliography filter 〈name〉, to be used via the check option of
\printbibliography. \defbibcheck is similar in concept to \defbibfilter but
much more low-level. Rather than a high-level expression, the 〈code〉 is LaTeX code,
much like the code used in driver definitions, which may perform arbitrary tests
to decide whether or not a given entry is to be printed. The bibliographic data of
the respective entry is available when the 〈code〉 is executed. Issuing the command
\skipentry in the 〈code〉 will cause the current entry to be skipped. For example,
the following filter will only output entries with an abstract field:

\defbibcheck{abstract}{%
\iffieldundef{abstract}{\skipentry}{}}

...
\printbibliography[check=abstract]

The following check will exclude all entries published before the year 2000:

\defbibcheck{recent}{%
\iffieldint{year}

{\ifnumless{\thefield{year}}{2000}
{\skipentry}
{}}

{\skipentry}}

See the author guide, in particular §§ 4.6.2 and 4.6.3, for further details.

3.5.10 Dynamic Entry Sets

In addition to the @set entry type, biblatex also supports dynamic entry sets
defined on a per-document/per-refsection basis. The following command, which
may be used in the dcument preamble or the document body, defines the set 〈key〉:

\defbibentryset{〈key〉}{〈key1,key2,key3, . . . 〉} Biber only

The 〈key〉 is the entry key of the set, which is used like any other entry key when re-
ferring to the set. The 〈key〉 must be unique and it must not conflict with any other
entry key. The second argument is a comma-separated list of the entry keys which
make up the set. \defbibentryset implies the equivalent of a \nocite command,
i. e., all sets which are declared are also added to the bibliography. When declaring
the same set more than once, only the first invocation of \defbibentryset will
define the set. Subsequent definitions of the same 〈key〉 are ignored and work like
\nocite〈key〉. Dynamic entry sets defined in the document body are local to the
enclosing refsection environment, if any. Otherwise, they are assigned to refer-

78

ence section 0. Those defined in the preamble are assigned to reference section 0.
Note that dynamic entry sets require Biber. They will not work with any other
backend. See § 3.10.5 for further details.

3.6 Citation Commands

All citation commands generally take one mandatory and two optional arguments.
The 〈prenote〉 is text to be printed at the beginning of the citation. This is usually
a notice such as ‘see’ or ‘compare’. The 〈postnote〉 is text to be printed at the very
end of the citation. This is usually a page number. If only one of these arguments
is given, it is taken as a postnote. If you want to specify a prenote but no postnote,
you need to leave the second optional argument empty, as in \cite[see][]{key}.
The 〈key〉 argument to all citation commands is mandatory. This is the entry key or
a comma-separated list of keys corresponding to the entry keys in the bib file. In
sum, all basic citations commands listed further down have the following syntax:

\command[〈prenote〉][〈postnote〉]{〈keys〉}〈punctuation〉

If the autopunct package option from § 3.1.2.1 is enabled, they will scan ahead
for any 〈punctuation〉 immediately following their last argument. This is useful to
avoid spurious punctuation marks after citations. This feature is configured with
\DeclareAutoPunctuation, see § 4.7.5 for details.

3.6.1 Standard Commands

The following commands are defined by the citation style. Citation styles may pro-
vide any arbitrary number of specialized commands, but these are the standard
commands typically provided by general-purpose styles.

\cite[〈prenote〉][〈postnote〉]{〈key〉}
\Cite[〈prenote〉][〈postnote〉]{〈key〉}

These are the bare citation commands. They print the citation without any addi-
tions such as parentheses. The numeric and alphabetic styles still wrap the label in
square brackets since the reference may be ambiguous otherwise. \Cite is similar
to \cite but capitalizes the name prefix of the first name in the citation if the
useprefix option is enabled, provided that there is a name prefix and the citation
style prints any name at all.

\parencite[〈prenote〉][〈postnote〉]{〈key〉}
\Parencite[〈prenote〉][〈postnote〉]{〈key〉}

These commands use a format similar to \cite but enclose the entire citation
in parentheses. The numeric and alphabetic styles use square brackets instead.
\Parencite is similar to \parencite but capitalizes the name prefix of the first
name in the citation if the useprefix option is enabled, provided that there is a
name prefix and the citation style prints any name at all.

\footcite[〈prenote〉][〈postnote〉]{〈key〉}
\footcitetext[〈prenote〉][〈postnote〉]{〈key〉}

These command use a format similar to \cite but put the entire citation in a

79

footnote and add a period at the end. In the footnote, they automatically capitalize
the name prefix of the first name if the useprefix option is enabled, provided that
there is a name prefix and the citation style prints any name at all. \footcitetext
diVers from \footcite in that it uses \footnotetext instead of \footnote.

3.6.2 Style-specific Commands

The following additional citation commands are only provided by some of the
citation styles which ship with this package.

\textcite[〈prenote〉][〈postnote〉]{〈key〉}
\Textcite[〈prenote〉][〈postnote〉]{〈key〉}

These citation commands are provided by all non-verbose styles which ship with
this package. They are intended for use in the flow of text, replacing the subject
of a sentence. They print the authors or editors followed by a citation label which
is enclosed in parentheses. Depending on the citation style, the label may be a
number, the year of publication, an abridged version of the title, or something
else. The numeric and alphabetic styles use square brackets instead of parentheses.
\Textcite is similar to \textcite but capitalizes the name prefix of the first name
in the citation if the useprefix option is enabled, provided that there is a name
prefix.

\smartcite[〈prenote〉][〈postnote〉]{〈key〉}
\Smartcite[〈prenote〉][〈postnote〉]{〈key〉}

Like \parencite in a footnote and like \footcite in the body.

\cite*[〈prenote〉][〈postnote〉]{〈key〉}

This command is provided by all author-year and author-title styles. It is similar to
the regular \cite command but merely prints the year or the title, respectively.

\parencite*[〈prenote〉][〈postnote〉]{〈key〉}

This command is provided by all author-year and author-title styles. It is similar to
the regular \parencite command but merely prints the year or the title, respec-
tively.

\supercite{〈key〉}

This command, which is only provided by the numeric styles, prints numeric
citations as superscripts without brackets. It uses \supercitedelim instead of
\multicitedelim as citation delimiter. Note that any 〈prenote〉 and 〈postnote〉 ar-
guments are ignored. If they are given, \supercite will discard them and issue a
warning message.

3.6.3 Qualified Citation Lists

This package supports a class of special citation commands called ‘multicite’ com-
mands. The point of these commands is that their argument is a list of citations
where each item forms a fully qualified citation with a pre- and/or postnote. This
is particularly useful with parenthetical citations and citations given in footnotes.

80

It is also possible to assign a pre- and/or postnote to the entire list. The multicite
commands are built on top of backend commands like \parencite and \footcite.
The citation style provides a multicite definition with \DeclareMultiCiteCommand
(see § 4.3.1). The following example illustrates the syntax of multicite commands:

\parencites[35]{key1}[88--120]{key2}[23]{key3}

The format of the arguments is similar to that of the regular citation commands,
except that only one citation command is given. If only one optional argument
is given for an item in the list, it is taken as a postnote. If you want to specify a
prenote but no postnote, you need to leave the second optional argument of the
respective item empty:

\parencites[35]{key1}[chapter 2 in][]{key2}[23]{key3}

In addition to that, the entire citation list may also have a pre- and/or postnote.
The syntax of these global notes diVers from other optional arguments in that they
are given in parentheses rather than the usual brackets:

\parencites(and chapter 3)[35]{key1}[78]{key2}[23]{key3}
\parencites(Compare)()[35]{key1}[78]{key2}[23]{key3}
\parencites(See)(and the introduction)[35]{key1}[78]{key2}[23]{key3}

Note that the multicite commands keep on scanning for arguments until they en-
counter a token that is not the start of an optional or mandatory argument. If a
left brace or bracket follows a multicite command, you need to mask it by adding
\relax or a control space (a backslash followed by a space) after the last valid
argument. This will cause the scanner to stop.

\parencites[35]{key1}[78]{key2}\relax[...]
\parencites[35]{key1}[78]{key2}\ {...}

By default, this package provides the following multicite commands which corre-
spond to regular commands from §§ 3.6.1 and 3.6.2:

\cites(〈pre〉)(〈post〉)[〈pre〉][〈post〉]{〈key〉}...[〈pre〉][〈post〉]{〈key〉}
\Cites(〈pre〉)(〈post〉)[〈pre〉][〈post〉]{〈key〉}...[〈pre〉][〈post〉]{〈key〉}

The multicite version of \cite and \Cite, respectively.

\parencites(〈pre〉)(〈post〉)[〈pre〉][〈post〉]{〈key〉}...[〈pre〉][〈post〉]{〈key〉}
\Parencites(〈pre〉)(〈post〉)[〈pre〉][〈post〉]{〈key〉}...[〈pre〉][〈post〉]{〈key〉}

The multicite version of \parencite and \Parencite, respectively.

\footcites(〈pre〉)(〈post〉)[〈pre〉][〈post〉]{〈key〉}...[〈pre〉][〈post〉]{〈key〉}
\footcitetexts(〈pre〉)(〈post〉)[〈pre〉][〈post〉]{〈key〉}...[〈pre〉][〈post〉]{〈key〉}

The multicite version of \footcite and \footcitetext, respectively.

\smartcites(〈pre〉)(〈post〉)[〈pre〉][〈post〉]{〈key〉}...[〈pre〉][〈post〉]{〈key〉}
\Smartcites(〈pre〉)(〈post〉)[〈pre〉][〈post〉]{〈key〉}...[〈pre〉][〈post〉]{〈key〉}

The multicite version of \smartcite and \Smartcite, respectively.

81

\textcites(〈pre〉)(〈post〉)[〈pre〉][〈post〉]{〈key〉}...[〈pre〉][〈post〉]{〈key〉}
\Textcites(〈pre〉)(〈post〉)[〈pre〉][〈post〉]{〈key〉}...[〈pre〉][〈post〉]{〈key〉}

The multicite version of \textcite and \Textcite, respectively. This command is
only provided by non-verbose styles.

\supercites(〈pre〉)(〈post〉)[〈pre〉][〈post〉]{〈key〉}...[〈pre〉][〈post〉]{〈key〉}

The multicite version of \supercite. This command is only provided by the nu-
meric styles.

3.6.4 Style-independent Commands

Sometimes it is desirable to give the citations in the source file in a format that is
not tied to a specific citation style and can be modified globally in the preamble.
The format of the citations is easily changed by loading a diVerent citation style.
However, when using commands such as \parencite or \footcite, the way the
citations are integrated with the text is still eVectively hard-coded. The idea be-
hind the \autocite command is to provide higher-level citation markup which
makes global switching from inline citations to citations given in footnotes (or as
superscripts) possible. The \autocite command is built on top of backend com-
mands like \parencite and \footcite. The citation style provides an \autocite
definition with \DeclareAutoCiteCommand (see § 4.3.1). This definition may be
activated with the autocite package option from § 3.1.2.1. The citation style will
usually initialize this package option to a value which is suitable for the style, see
§ 3.3.1 for details. Note that there are certain limits to high-level citation markup.
For example, inline author-year citation schemes often integrate citations so tightly
with the text that it is virtually impossible to automatically convert them to foot-
notes. The \autocite command is only applicable in cases in which you would
normally use \parencite or \footcite (or \supercite, with a numeric style).
The citations should be given at the end of a sentence or a partial sentence, imme-
diately preceding the terminal punctuation mark, and they should not be a part of
the sentence in a grammatical sense (like \textcite, for example).

\autocite[〈prenote〉][〈postnote〉]{〈key〉}
\Autocite[〈prenote〉][〈postnote〉]{〈key〉}

In contrast to other citation commands, the \autocite command does not only
scan ahead for punctuation marks following its last argument to avoid double
punctuation marks, it actually moves them around if required. For example, with
autocite=footnote, a trailing punctuation mark will be moved such that the
footnote mark is printed after the punctuation. \Autocite is similar to \autocite
but capitalizes the name prefix of the first name in the citation if the useprefix
option is enabled, provided that there is a name prefix and the citation style prints
any name at all.

\autocite*[〈prenote〉][〈postnote〉]{〈key〉}
\Autocite*[〈prenote〉][〈postnote〉]{〈key〉}

The starred variants of \autocite do not behave diVerently from the regular

82

ones. The asterisk is simply passed on to the backend command. For example,
if \autocite is configured to use \parencite, then \autocite* will execute
\parencite*.

\autocites(〈pre〉)(〈post〉)[〈pre〉][〈post〉]{〈key〉}...[〈pre〉][〈post〉]{〈key〉}
\Autocites(〈pre〉)(〈post〉)[〈pre〉][〈post〉]{〈key〉}...[〈pre〉][〈post〉]{〈key〉}

This is the multicite version of \autocite. It also detects and moves punctua-
tion if required. Note that there is no starred variant. \Autocites is similar to
\autocites but capitalizes the name prefix of the first name in the citation if the
useprefix option is enabled, provided that there is a name prefix and the citation
style prints any name at all.

3.6.5 Text Commands

The following commands are provided by the core of biblatex. They are intended
for use in the flow of text. Note that all text commands are excluded from citation
tracking.

\citeauthor[〈prenote〉][〈postnote〉]{〈key〉}
\Citeauthor[〈prenote〉][〈postnote〉]{〈key〉}

These commands print the authors. Strictly speaking, it prints the labelname list,
which may be the author, the editor, or the translator. \Citeauthor is similar
to \citeauthor but capitalizes the name prefix of the first name in the citation if
the useprefix option is enabled, provided that there is a name prefix.

\citetitle[〈prenote〉][〈postnote〉]{〈key〉}
\citetitle*[〈prenote〉][〈postnote〉]{〈key〉}

This command prints the title. It will use the abridged title in the shorttitle field,
if available. Otherwise it falls back to the full title found in the title field. The
starred variant always prints the full title.

\citeyear[〈prenote〉][〈postnote〉]{〈key〉}

This command prints the year (year field or year component of date).

\citedate[〈prenote〉][〈postnote〉]{〈key〉}

This command prints the full date (date or year).

\citeurl[〈prenote〉][〈postnote〉]{〈key〉}

This command prints the url field.

\parentext{〈text〉}

This command wraps the 〈text〉 in context sensitive parentheses.

\brackettext{〈text〉}

This command wraps the 〈text〉 in context sensitive brackets.

83

3.6.6 Special Commands

The following special commands are also provided by the core of biblatex.

\nocite{〈key〉}
\nocite{*}

This command is similar to the standard LaTeX \nocite command. It adds the
〈key〉 to the bibliography without printing a citation. If the 〈key〉 is an asterisk, all
entries available in the bib file are added to the bibliography. Like all other citation
commands, \nocite commands in the document body are local to the enclosing
refsection environment, if any. In contrast to standard LaTeX, \nocite may also
be used in the document preamble. In this case, the references are assigned to
reference section 0.

\fullcite[〈prenote〉][〈postnote〉]{〈key〉}

This command uses the bibliography driver for the respective entry type to create a
full citation similar to the bibliography entry. It is thus related to the bibliography
style rather than the citation style.

\footfullcite[〈prenote〉][〈postnote〉]{〈key〉}

Similar to \fullcite but puts the entire citation in a footnote and adds a period
at the end.

\volcite[〈prenote〉]{〈volume〉}[〈page〉]{〈key〉}
\Volcite[〈prenote〉]{〈volume〉}[〈page〉]{〈key〉}

These commands are similar to \cite and \Cite but intended for references
to multi-volume works which are cited by volume and page number. Instead of
the 〈postnote〉, they take a mandatory 〈volume〉 and an optional 〈page〉 argument.
Since they merely compose the postnote and pass it to the \cite command pro-
vided by the citation style as a 〈postnote〉 argument, these commands are style
independent. The format of the volume portion is controlled by the field format-
ting directive volcitevolume, the format of the page/text portion is controlled by
the field formatting directive volcitepages.

\pvolcite[〈prenote〉]{〈volume〉}[〈page〉]{〈key〉}
\Pvolcite[〈prenote〉]{〈volume〉}[〈page〉]{〈key〉}

Similar to \volcite but based on \parencite.

\fvolcite[〈prenote〉]{〈volume〉}[〈page〉]{〈key〉}
\ftvolcite[〈prenote〉]{〈volume〉}[〈page〉]{〈key〉}

Similar to \volcite but based on \footcite and \footcitetext, respectively.

\svolcite[〈prenote〉]{〈volume〉}[〈page〉]{〈key〉}
\Svolcite[〈prenote〉]{〈volume〉}[〈page〉]{〈key〉}

Similar to \volcite but based on \smartcite.

84

\tvolcite[〈prenote〉]{〈volume〉}[〈page〉]{〈key〉}
\Tvolcite[〈prenote〉]{〈volume〉}[〈page〉]{〈key〉}

Similar to \volcite but based on \textcite.

\avolcite[〈prenote〉]{〈volume〉}[〈page〉]{〈key〉}
\Avolcite[〈prenote〉]{〈volume〉}[〈page〉]{〈key〉}

Similar to \volcite but based on \autocite.

\notecite[〈prenote〉][〈postnote〉]{〈key〉}
\Notecite[〈prenote〉][〈postnote〉]{〈key〉}

These commands print the 〈prenote〉 and 〈postnote〉 arguments but no citation.
Instead, a \nocite command is issued for every 〈key〉. This may be useful for au-
thors who incorporate implicit citations in their writing, only giving information
not mentioned before in the running text, but who still want to take advantage of
the automatic 〈postnote〉 formatting and the implicit \nocite function. This is a
generic, style-independent citation command. Special citation styles may provide
smarter facilities for the same purpose. The capitalized version forces capitaliza-
tion (note that this is only applicable if the note starts with a command which is
sensitive to biblatex’s punctuation tracker).

\pnotecite[〈prenote〉][〈postnote〉]{〈key〉}
\Pnotecite[〈prenote〉][〈postnote〉]{〈key〉}

Similar to \notecite but the notes are printed in parentheses.

\fnotecite[〈prenote〉][〈postnote〉]{〈key〉}

Similar to \notecite but the notes are printed in a footnote.

3.6.7 Low-level Commands

The following commands are also provided by the core of biblatex. They grant
access to all lists and fields at a lower level.

\citename[〈prenote〉][〈postnote〉]{〈key〉}[〈format〉]{〈name list〉}

The 〈format〉 is a formatting directive defined with \DeclareNameFormat. Format-
ting directives are discussed in § 4.4.2. If this optional argument is omitted, this
command falls back to the format citename. The last argument is the name of a
〈name list〉, in the sense explained in § 2.2.

\citelist[〈prenote〉][〈postnote〉]{〈key〉}[〈format〉]{〈literal list〉}

The 〈format〉 is a formatting directive defined with \DeclareListFormat. Format-
ting directives are discussed in § 4.4.2. If this optional argument is omitted, this
command falls back to the format citelist. The last argument is the name of a
〈literal list〉, in the sense explained in § 2.2.

\citefield[〈prenote〉][〈postnote〉]{〈key〉}[〈format〉]{〈field〉}

The 〈format〉 is a formatting directive defined with \DeclareFieldFormat. For-

85

matting directives are discussed in § 4.4.2. If this optional argument is omitted,
this command falls back to the format citefield. The last argument is the name
of a 〈field〉, in the sense explained in § 2.2.

3.6.8 Miscellaneous Commands

The commands in this section are little helpers related to citations.

\citereset This command resets the citation style. This may be useful if the style replaces
repeated citations with abbreviations like ibidem, idem, op. cit., etc. and you want
to force a full citation at the beginning of a new chapter, section, or some other lo-
cation. The command executes a style specific initialization hook defined with the
\InitializeCitationStyle command from § 4.3.1. It also resets the internal cita-
tion trackers of this package. The reset will aVect the \ifciteseen, \ifentryseen,
\ifciteibid, and \ifciteidem tests discussed in § 4.6.2. When used inside a
refsection environment, the reset of the citation tracker is local to the current
refsection environment. Also see the citereset package option in § 3.1.2.1.

\citereset* Similar to \citereset but only executes the style’s initialization hook, without
resetting the internal citation trackers.

\mancite Use this command to mark manually inserted citations if you mix automatically
generated and manual citations. This is particularly useful if the citation style re-
places repeated citations by an abbreviation like ibidem which may get ambiguous
or misleading otherwise. Always use \mancite in the same context as the manual
citation, e. g., if the citation is given in a footnote, include \mancite in the foot-
note. The \mancite command executes a style specific reset hook defined with
the \OnManualCitation command from § 4.3.1. It also resets the internal ‘ibidem’
and ‘idem’ trackers of this package. The reset will aVect the \ifciteibid and
\ifciteidem tests discussed in § 4.6.2.

\pno This command forces a single page prefix in the 〈postnote〉 argument to a citation
command. See § 3.11.3 for further details and usage instructions. Note that this
command is only available locally in citations and the bibliography.

\ppno Similar to \pno but forces a range prefix. See § 3.11.3 for further details and usage
instructions. Note that this command is only available locally in citations and the
bibliography.

\nopp Similar to \pno but suppresses all prefixes. See § 3.11.3 for further details and usage
instructions. Note that this command is only available locally in citations and the
bibliography.

\psq In the 〈postnote〉 argument to a citation command, this command indicates a range
of two pages where only the starting page is given. See § 3.11.3 for further details
and usage instructions. The suYx printed is the localization string sequens, see
§ 4.9.2. The spacing inserted between the suYx and the page number may be
modified by redefining the macro \sqspace. The default is an unbreakable inter-
word space. Note that this command is only available locally in citations and the
bibliography.

86

\psqq Similar to \psq but indicates an open-ended page range. See § 3.11.3 for further de-
tails and usage instructions. The suYx printed is the localization string sequentes,
see § 4.9.2. This command is only available locally in citations and the bibliogra-
phy.

\RN{〈integer〉}

This command prints an integer as an uppercase Roman numeral. The formatting
applied to the numeral may be modified by redefining the macro \RNfont.

\Rn{〈integer〉}

Similar to \RN but prints a lowercase Roman numeral. The formatting applied to
the numeral may be modified by redefining the macro \Rnfont.

3.6.9 natbib Compatibility Commands

The natbib package option loads a natbib compatibility module. The module
defines aliases for the citation commands provided by the natbib package. This
includes aliases for the core citation commands \citet and \citep as well as
the variants \citealt and \citealp. The starred variants of these commands,
which print the full author list, are also supported. The \cite command, which
is handled in a particular way by natbib, is not treated in a special way. The
text commands (\citeauthor, \citeyear, etc.) are also supported, as are all
commands which capitalize the name prefix (\Citet, \Citep, \Citeauthor, etc.).
Aliasing with \defcitealias, \citetalias, and \citepalias is possible as well.
Note that the compatibility commands will not emulate the citation format of the
natbib package. They merely alias natbib’s commands to functionally equivalent
facilities of the biblatex package. The citation format depends on the main cita-
tion style. However, the compatibility style will adapt \nameyeardelim to match
the default style of the natbib package.

3.6.10 mcite-like Citation Commands Biber only

The mcite package option loads a special citation module which provides mcite/
mciteplus-like citation commands. Strictly speaking, what the module provides
are wrappers for the commands of the main citation style. For example, the follow-
ing command:

\mcite{key1,setA,*keyA1,*keyA2,*keyA3,key2,setB,*keyB1,*keyB2,*keyB3}

is essentially equivalent to this:

\defbibentryset{setA}{keyA1,keyA2,keyA3}%
\defbibentryset{setB}{keyB1,keyB2,keyB3}%
\cite{key1,setA,key2,setB}

The \mcite command will work with any style since the \cite backend command
is controlled by the main citation style as usual. The mcite module provides wrap-
pers for the standard commands in §§ 3.6.1 and 3.6.2. See table 6 for an overview.
Pre and postnotes as well as starred variants of all commands are also supported.
The parameters will be passed to the backend command. For example:

87

Standard Command mcite-like Command

\cite \mcite
\Cite \Mcite
\parencite \mparencite
\Parencite \Mparencite
\footcite \mfootcite
\footcitetext \mfootcitetext
\textcite \mtextcite
\Textcite \Mtextcite
\supercite \msupercite

Table 5: mcite-like commands

\mcite*[pre][post]{setA,*keyA1,*keyA2,*keyA3}

will execute:

\defbibentryset{setA}{keyA1,keyA2,keyA3}%
\cite*[pre][post]{setA}

Note that the mcite module is not a compatibility module. It provides commands
which are very similar but not identical in syntax and function to mcite’s com-
mands. When migrating from mcite/mciteplus to biblatex, legacy files must be
updated. With mcite, the first member of the citation group is also the identifier of
the group as a whole. Borrowing an example from the mcite manual, this group:

\cite{glashow,*salam,*weinberg}

consists of three entries and the entry key of the first one also serves as identifier
of the entire group. In contrast to that, a biblatex entry set is an entity in its own
right. Therefore, it requires a unique entry key which is assigned to the set as it is
defined:

\mcite{set1,*glashow,*salam,*weinberg}

Once defined, an entry set is handled like any regular entry in a bib file. When
using one of the numeric styles which ship with biblatex and activating its
subentry option, it is even possible to refer to set members. See table 6 for some
examples. Restating the original definition of the set is redundant, but permissible.
In contrast to mciteplus, however, restating a part of the original definition is
invalid. Use the entry key of the set instead.

3.7 Localization Commands

The biblatex package provides translations for key terms such as ‘edition’ or ‘vol-
ume’ as well as definitions for language specific features such as the date format
and ordinals. These definitions, which are loaded automatically, may be modified
or extended in the document preamble or the configuration file with the com-
mands introduced in this section.

\DefineBibliographyStrings{〈language〉}{〈definitions〉}

This command is used to define localization strings. The 〈language〉 must be a
language name known to the babel package, i. e., one of the identifiers listed

88

Input Output Comment

\mcite{set1,*glashow,*salam,*weinberg} [1] Defining and citing the set
\mcite{set1} [1] Subsequent citation of the set
\cite{set1} [1] Regular \cite works as usual
\mcite{set1,*glashow,*salam,*weinberg} [1] Redundant, but permissible
\mcite{glashow} [1a] Citing a set member
\cite{weinberg} [1c] Regular \cite works as well

Table 6: mcite-like syntax (sample output with style=numeric and subentry option)

in table 1 on page 24. The 〈definitions〉 are 〈key〉=〈value〉 pairs which assign an
expression to an identifier:

\DefineBibliographyStrings{american}{%
bibliography = {Bibliography},
shorthands = {Abbreviations},
editor = {editor},
editors = {editors},

}

A complete list of all keys supported by default is given is § 4.9.2. Note that all
expressions should be capitalized as they usually are when used in the middle
of a sentence. The biblatex package will automatically capitalize the first word
when required at the beginning of a sentence. Expressions intended for use in
headings should be capitalized in a way that is suitable for titling. In contrast to
\DeclareBibliographyStrings, \DefineBibliographyStrings overrides both
the full and the abbreviated version of the string. See § 4.9.1 for further details.

\DefineBibliographyExtras{〈language〉}{〈code〉}

This command is used to adapt language specific features such as the date for-
mat and ordinals. The 〈language〉 must be a language name known to the babel
package. The 〈code〉, which may be arbitrary LaTeX code, will usually consist of
redefinitions of the formatting commands from § 3.8.2.

\UndefineBibliographyExtras{〈language〉}{〈code〉}

This command is used to restore the original definition of any commands mod-
ified with \DefineBibliographyExtras. If a redefined command is included in
§ 3.8.2, there is no need to restore its previous definition since these commands
are adapted by all language modules anyway.

\DefineHyphenationExceptions{〈language〉}{〈text〉}

This is a LaTeX frontend to TeX’s \hyphenation command which defines hyphen-
ation exceptions. The 〈language〉 must be a language name known to the babel
package. The 〈text〉 is a whitespace-separated list of words. Hyphenation points
are marked with a dash:

\DefineHyphenationExceptions{american}{%
hy-phen-ation ex-cep-tion

}

89

\NewBibliographyString{〈key〉}

This command declares new localization strings, i. e., it initializes a new 〈key〉 to
be used in the 〈definitions〉 of \DefineBibliographyStrings. The 〈key〉 argument
may also be a comma-separated list of key names. The keys listed in § 4.9.2 are
defined by default.

3.8 Formatting Commands

The commands and facilities presented in this section may be used to adapt the
format of citations and the bibliography.

3.8.1 Generic Commands and Hooks

The commands in this section may be redefined with \renewcommand in the docu-
ment preamble. Note that all commands starting with \mk... take one argument.
All of these commands are defined in biblatex.def.

\bibsetup Arbitrary code to be executed at the beginning of the bibliography, intended for
commands which aVect the layout of the bibliography.

\bibfont Arbitrary code setting the font used in the bibliography. This is very similar to
\bibsetup but intended for switching fonts.

\citesetup Arbitrary code to be executed at the beginning of each citation command.

\newblockpunct The separator inserted between ‘blocks’ in the sense explained in § 4.7.1. The de-
fault definition is controlled by the package option block (see § 3.1.2.1).

\newunitpunct The separator inserted between ‘units’ in the sense explained in § 4.7.1. This will
usually be a period or a comma plus an interword space. The default definition is
a period and a space.

\finentrypunct The punctuation printed at the very end of every bibliography entry, usually a
period. The default definition is a period.

\bibnamedelima This delimiter controls the spacing between the elements which make up a name Biber only

part. It is inserted automatically after the first name element if the element is less
than three characters long and before the last element. The default definition is an
interword space penalized by the value of the highnamepenalty counter (§ 3.8.3).
Please refer to § 3.11.4 for further details.

\bibnamedelimb This delimiter is inserted between the elements which make up a name part where Biber only

\bibnamedelima does not apply. The default definition is an interword space penal-
ized by the value of the lownamepenalty counter (§ 3.8.3). Please refer to § 3.11.4
for further details.

\bibnamedelimc This delimiter controls the spacing between name parts. It is inserted between the
name prefix and the last name if useprefix=true. The default definition is an
interword space penalized by the value of the highnamepenalty counter (§ 3.8.3).
Please refer to § 3.11.4 for further details.

\bibnamedelimd This delimiter is inserted between all name parts where \bibnamedelimc does not

90

apply. The default definition is an interword space penalized by the value of the
lownamepenalty counter (§ 3.8.3). Please refer to § 3.11.4 for further details.

\bibnamedelimi This delimiter replaces \bibnamedelima/b after initials. Note that this only applies Biber only

to initials given as such in the bib file, not to the initials automatically generated
by biblatex which use their own set of delimiters.

\bibinitperiod The punctuation inserted after initials unless \bibinithyphendelim applies. The Biber only

default definition is a period (\adddot). Please refer to § 3.11.4 for further details.

\bibinitdelim The spacing inserted between multiple initials unless \bibinithyphendelim ap- Biber only

plies. The default definition is an unbreakable interword space. Please refer to
§ 3.11.4 for further details.

\bibinithyphendelim The punctuation inserted between the initials of hyphenated name parts, replacing Biber only

\bibinitperiod and \bibinitdelim. The default definition is a period followed
by an unbreakable hyphen. Please refer to § 3.11.4 for further details.

\bibindexnamedelima Replaces \bibnamedelima in the index.

\bibindexnamedelimb Replaces \bibnamedelimb in the index.

\bibindexnamedelimc Replaces \bibnamedelimc in the index.

\bibindexnamedelimd Replaces \bibnamedelimd in the index.

\bibindexnamedelimi Replaces \bibnamedelimi in the index.

\bibindexinitperiod Replaces \bibinitperiod in the index.

\bibindexinitdelim Replaces \bibinitdelim in the index.

\bibindexinithyphendelim Replaces \bibinithyphendelim in the index.

\bibnamedash The dash to be used as a replacement for recurrent authors or editors in the bib-
liography. The default is an ‘em’ or an ‘en’ dash, depending on the indentation of
the list of references.

\labelnamepunct The separator printed after the name used for alphabetizing in the bibliography
(author or editor, if the author field is undefined). With the default styles,
this separator replaces \newunitpunct at this location. The default definition is
\newunitpunct, i. e., it is not handled diVerently from regular unit punctuation.

\subtitlepunct The separator printed between the fields title and subtitle, booktitle and
booksubtitle, as well as maintitle and mainsubtitle. With the default styles,
this separator replaces \newunitpunct at this location. The default definition is
\newunitpunct, i. e., it is not handled diVerently from regular unit punctuation.

\intitlepunct The separator between the word “in” and the following title in entry types such
as @article, @inbook, @incollection, etc. The default definition is a colon plus
an interword space (e. g.,“Article, in: Journal” or “Title, in: Book”). Note that this
is the separator string, not only the punctuation mark. If you don’t want a colon
after “in”, \intitlepunct should still insert a space.

91

\bibpagespunct The separator printed before the pages field. The default is a comma plus an
interword space.

\bibpagerefpunct The separator printed before the pageref field. The default is an interword space.

\multinamedelim The delimiter printed between multiple items in a name list like author or editor
if there are more than two names in the list. The default is a comma plus an
interword space. See \finalnamedelim for an example.1

\finalnamedelim The delimiter printed instead of \multinamedelim before the final name in a name
list. The default is the localized term ‘and’, separated by interword spaces. Here is
an example:

Michel Goossens, Frank Mittelbach and Alexander Samarin
Edward Jones and Joe Williams

The comma in the first example is the \multinamedelim whereas the string ‘and’
in both examples is the \finalnamedelim. See also \finalandcomma in § 3.8.2.

\revsdnamedelim An extra delimiter printed after the first name in a name list if the first name is
reversed. The default is an empty string, i. e., no extra delimiter will be printed.
Here is an example showing a name list with a comma as \revsdnamedelim:

Jones, Edward, and Joe Williams

In this example, the comma after ‘Edward’ is the \revsdnamedelim whereas the
string ‘and’ is the \finalnamedelim, printed in addition to the former.

\andothersdelim The delimiter printed before the localization string ‘andothers’ if a name list like
author or editor is truncated. The default is an interword space.

\multilistdelim The delimiter printed between multiple items in a literal list like publisher or
location if there are more than two items in the list. The default is a comma plus
an interword space. See \multinamedelim for further explanation.

\finallistdelim The delimiter printed instead of \multilistdelim before the final item in a literal
list. The default is the localized term ‘and’, separated by interword spaces. See
\finalnamedelim for further explanation.

\andmoredelim The delimiter printed before the localization string ‘andmore’ if a literal list like
publisher or location is truncated. The default is an interword space.

\multicitedelim The delimiter printed between citations if multiple entry keys are passed to a single
citation command. The default is a semicolon plus an interword space.

\supercitedelim Similar to \multicitedelim, but used by the \supercite command only. The
default is a comma.

\compcitedelim Similar to \multicitedelim, but used by certain citation styles when ‘compress-
ing’ multiple citations. The default definition is a comma plus an interword space.

1 Note that \multinamedelim is not used at all if there are only two names in the list. In this case,
the default styles use the \finalnamedelim.

92

\nametitledelim The delimiter printed between the author/editor and the title by author-title and
some verbose citation styles. The default definition is a comma plus an interword
space.

\nameyeardelim The delimiter printed between the author/editor and the year by author-year cita-
tion styles. The default definition is an interword space.

\labelalphaothers A string to be appended to the non-numeric portion of the labelalpha field (i. e.,
the field holding the citation label used by alphabetic citation styles) if the number
of authors/editors exceeds the maxalphanames threshold or the author/editor
list was truncated in the bib file with the keyword ‘and others’. This will typically
be a single character such as a plus sign or an asterisk. The default is a plus sign.
This command may also be redefined to an empty string to disable this feature. In
any case, it must be redefined in the preamble.

\sortalphaothers Similar to \labelalphaothers but used in the sorting process. Setting it to a dif- Biber only

ferent value is advisable if the latter contains formatting commands, for example:

\renewcommand*{\labelalphaothers}{\textbf{+}}
\renewcommand*{\sortalphaothers}{+}

If \sortalphaothers is not redefined, it defaults to \labelalphaothers.

\prenotedelim The delimiter printed after the 〈prenote〉 argument of a citation command. See
§ 3.6 for details. The default is an interword space.

\postnotedelim The delimiter printed before the 〈postnote〉 argument of a citation command. See
§ 3.6 for details. The default is a comma plus an interword space.

\mkbibnamelast{〈text〉}

This command, which takes one argument, is used to format the last name of all
authors, editors, translators, etc.

\mkbibnamefirst{〈text〉}

Similar to \mkbibnamelast, but intended for the first name.

\mkbibnameprefix{〈text〉}

Similar to \mkbibnamelast, but intended for the name prefix.

\mkbibnameaffix{〈text〉}

Similar to \mkbibnamelast, but intended for the name aYx.

3.8.2 Language-specific Commands

The commands in this section are language specific. When redefining them, you
need to wrap the new definition in a \DeclareBibliographyExtras command,
see § 3.7 for details. Note that all commands starting with \mk... take one or
more arguments.

\bibrangedash The language specific dash to be used for ranges of numbers.

93

\bibdatedash The language specific dash to be used for date ranges.

\mkbibdatelong Takes the names of three field as arguments which correspond to three date com-
ponents (in the order year/month/day) and uses their values to print the date in
the language specific long date format.

\mkbibdateshort Similar to \mkbibdatelong but using the language specific short date format.

\finalandcomma Prints the comma to be inserted before the final ‘and’ in a list, if applicable in the
respective language. Here is an example:

Michel Goossens, Frank Mittelbach, and Alexander Samarin

\finalandcomma is the comma before the word ‘and’. See also \multinamedelim,
\finalnamedelim, and \revsdnamedelim in § 3.8.1.

\mkbibordinal{〈integer〉}

This command, which takes an integer as its argument, prints an ordinal number.

\mkbibmascord{〈integer〉}

Similar to \mkbibordinal, but prints a masculine ordinal, if applicable in the re-
spective language.

\mkbibfemord{〈integer〉}

Similar to \mkbibordinal, but prints a feminine ordinal, if applicable in the re-
spective language.

\mkbibordedition{〈integer〉}

Similar to \mkbibordinal, but intended for use with the term ‘edition’.

\mkbibordseries{〈integer〉}

Similar to \mkbibordinal, but intended for use with the term ‘series’.

3.8.3 Lengths and Counters

The length registers and counters in this section may be changed in the document
preamble with \setlength and \setcounter, respectively.

\bibhang The hanging indentation of the bibliography, if applicable. This length is initialized
to \parindent at load-time.

\biblabelsep The horizontal space between entries and their corresponding labels in the bib-
liography. This only applies to bibliography styles which print labels, such as the
numeric and alphabetic styles. This length is initialized to twice the value of
\labelsep at load-time.

\bibitemsep The vertical space between the individual entries in the bibliography. This length
is initialized to \itemsep at load-time. Note that \bibitemsep, \bibnamesep, and
\bibinitsep are cumulative. When they coincide, the largest value will be ap-
plied.

94

\bibnamesep Vertical space to be inserted between two entries in the bibliography whenever
an entry starts with a name which is diVerent from the initial name of the previ-
ous entry. The default value is zero. Setting this length to a positive value greater
than \bibitemsep will group the bibliography by author/editor name. Note that
\bibitemsep, \bibnamesep, and \bibinitsep are cumulative. When they coin-
cide, the largest value will be applied.

\bibinitsep Vertical space to be inserted between two entries in the bibliography whenever an
entry starts with a letter which is diVerent from the initial letter of the previous
entry. The default value is zero. Setting this length to a positive value greater than
\bibitemsep will group the bibliography alphabetically. Note that \bibitemsep,
\bibnamesep, and \bibinitsep are cumulative. When they coincide, the largest
value will be applied.

\bibparsep The vertical space between paragraphs within an entry in the bibliography. The
default value is zero.

abbrvpenalty This counter, which is used by the localization modules, holds the penalty used in
short or abbreviated localization strings. For example, a linebreak in expressions
such as “et al.” or “ed. by” is unfortunate, but should still be possible to prevent
overfull boxes. This counter is initialized to \hyphenpenalty at load-time. The
idea is making TeX treat the whole expression as if it were a single, hyphenatable
word as far as line-breaking is concerned. If you dislike such linebreaks, use a
higher value. If you do not mind them at all, set this counter to zero. If you want
to suppress them unconditionally, set it to ‘infinite’ (10 000 or higher).1

highnamepenalty This counter holds a penalty aVecting line-breaking in names. Please refer to
§§ 3.11.4 and 3.8.1 for explanation. The counter is initialized to \hyphenpenalty at
load-time. Use a higher value if you dislike the respective linebreaks. If you do not
mind them at all, set this counter to zero. If you prefer the traditional BibTeX be-
havior (no linebreaks at highnamepenalty breakpoints), set it to ‘infinite’ (10 000
or higher).

lownamepenalty Similar to highnamepenalty. Please refer to §§ 3.11.4 and 3.8.1 for explanation.
The counter is initialized to half the \hyphenpenalty at load-time. Use a higher
value if you dislike the respective linebreaks. If you do not mind them at all, set
this counter to zero.

3.8.4 All-purpose Commands

The commands in this section are all-purpose text commands which are generally
available, not only in citations and the bibliography.

1 The default values assigned to abbrvpenalty, lownamepenalty, and highnamepenalty are delib-
erately very low to prevent overfull boxes. This implies that you will hardly notice any eVect on
line-breaking if the text is set justified. If you set these counters to 10 000 to suppress the respec-
tive breakpoints, you will notice their eVect but you may also be confronted with overfull boxes.
Keep in mind that line-breaking in the bibliography is often more diYcult than in the body text
and that you can not resort to rephrasing a sentence. In some cases it may be preferable to set the
entire bibliography \raggedright to prevent suboptimal linebreaks. In this case, even the fairly
low default penalties will make a visible diVerence.

95

\bibellipsis An ellipsis symbol with brackets: ‘[. . .]’.

\noligature Disables ligatures at this position and adds some space. Use this command to break
up standard ligatures like ‘fi’ and ‘fl’. It is similar to the "| shorthand provided by
some language modules of the babel package.

\hyphenate A conditional hyphen. In contrast to the standard \- command, this one allows
hyphenation in the rest of the word. It is similar to the "- shorthand provided by
some language modules of the babel package.

\hyphen An explicit, breakable hyphen intended for compound words. In contrast to a literal
‘-’, this command allows hyphenation in the rest of the word. It is similar to the "=
shorthand provided by some language modules of the babel package.

\nbhyphen An explicit, non-breakable hyphen intended for compound words. In contrast to a
literal ‘-’, this command does not permit line breaks at the hyphen but still allows
hyphenation in the rest of the word. It is similar to the "~ shorthand provided by
some language modules of the babel package.

\nohyphenation A generic switch which suppresses hyphenation locally. Its scope should normally
be confined to a group.

\textnohyphenation{〈text〉}

Similar to \nohyphenation but restricted to the 〈text〉 argument.

\mknumalph{〈integer〉}

Takes an integer in the range 1–702 as its argument and converts it to a string as
follows: 1=a, . . . , 26=z, 27=aa, . . . , 702=zz. This is intended for use in formatting
directives for the extrayear and extraalpha fields.

\mkbibacro{〈text〉}

Generic command which typesets an acronym using the small caps variant of the
current font, if available, and as-is otherwise. The acronym should be given in
uppercase letters.

\autocap{〈character〉}

Automatically converts the 〈character〉 to its uppercase form if biblatex’s punc-
tuation tracker would capitalize a localization string at the current location. This
command is robust. It is useful for conditional capitalization of certain strings in an
entry. Note that the 〈character〉 argument is a single character given in lowercase.
For example:

\autocap{s}pecial issue

will yield ‘Special issue’ or ‘special issue’, as appropriate. If the string to be capital-
ized starts with an inflected character given in Ascii notation, include the accent
command in the 〈character〉 argument as follows:

\autocap{\’e}dition sp\’eciale

96

This will yield ‘Édition spéciale’ or ‘édition spéciale’. If the string to be capitalized
starts with a command which prints a character, such as \ae or \oe, simply put
the command in the 〈character〉 argument:

\autocap{\oe}uvres

This will yield ‘Œuvres’ or ‘œuvres’.

3.9 Language-specific Notes

The facilities discussed in this section are specific to certain localization modules.

3.9.1 American

The American localization module uses \uspunctuation from § 4.7.5 to enable
‘American-style’ punctuation. If this feature is enabled, all trailing commas and
periods after \mkbibquote will be moved inside the quotes. If you want to disable
this feature, use \stdpunctuation as follows:

\DefineBibliographyExtras{american}{%
\stdpunctuation

}

By default, the ‘American punctuation’ feature is enabled by the american local-
ization module only. The above code is only required if you want American local-
ization without American punctuation. Since standard punctuation is the package
default, it would be redundant with any other language.

It is highly advisable to always specify american, british, australian, etc.
rather than english when loading the babel package to avoid any possible con-
fusion. Older versions of the babel package used to treat english as an alias for
british; more recent ones treat it as an alias for american. The biblatex package
essentially treats english as an alias for american, except for the above feature
which is only enabled if american is requested explicitly.

3.9.2 Spanish

Handling the word ‘and’ is more diYcult in Spanish than in the other languages
supported by this package because it may be ‘y’ or ‘e’, depending on the initial
sound of the following word. Therefore, the Spanish localization module does not
use the localization string ‘and’ but a special internal ‘smart and’ command. The
behavior of this command is controlled by the smartand counter.

smartand This counter controls the behavior of the internal ‘smart and’ command. When set
to 1, it prints ‘y’ or ‘e’, depending on the context. When set to 2, it always prints
‘y’. When set to 3, it always prints ‘e’. When set to 0, the ‘smart and’ feature is
disabled. This counter is initialized to 1 at load-time and may be changed in the
preamble. Note that setting this counter to a positive value implies that the Spanish
localization module ignores \finalnamedelim and \finallistdelim.

\forceE Use this command in bib files if biblatex gets the ‘and’ before a certain name
wrong. As its name suggests, it will enforce ‘e’. This command must be used in a
special way to prevent confusing BibTeX. Here is an example:

97

author = {Edward Jones and Eoin Maguire},
author = {Edward Jones and {\forceE{E}}oin Maguire},

Note that the initial letter of the respective name component is given as an argu-
ment to \forceE and that the entire construct is wrapped in an additional pair of
curly braces.

\forceY Similar to \forceE but enforces ‘y’.

3.9.3 Greek

The Greek localization module requires utf-8 support. It will not work with any
other encoding. Generally speaking, the biblatex package is compatible with
the inputenc package and with XeLaTeX. The ucs package will not work. Since
inputenc’s standard utf8 module is missing glyph mappings for Greek, this leaves
Greek users with XeLaTeX. Note that you may need to load additional packages
which set up Greek fonts. As a rule of thumb, a setup which works for regular
Greek documents should also work with biblatex. However, there is one funda-
mental limitation. As of this writing, biblatex has no support for switching scripts.
Greek titles in the bibliography should work fine, provided that you use Biber as a
backend, but English and other titles in the bibliography may be rendered in Greek
letters. If you need multi-script bibliographies, using XeLaTeX is the only sensible
choice.

3.10 Usage Notes

The following sections give a basic overview of the biblatex package and discuss
some typical usage scenarios.

3.10.1 Overview

Using the biblatex package is slightly diVerent from using traditional BibTeX
styles and related packages. Before we get to specific usage scenarios, we will
therefore have a look at the structure of a typical document first:

\documentclass{...}
\usepackage[...]{biblatex}
\addbibresource{bibfile.bib}
\begin{document}
\cite{...}
...
\printbibliography
\end{document}

With traditional BibTeX, the \bibliography command serves two purposes. It
marks the location of the bibliography and it also specifies the bib file(s). The file
extension is omitted. With biblatex, resources are specified in the preamble with
\addbibresource using the full name with .bib suYx. The bibliography is printed
using the \printbibliography command which may be used multiple times (see
§ 3.5 for details). The document body may contain any number of citation com-
mands (§ 3.6). Processing this example file requires that a certain procedure be

98

followed. Suppose our example file is called example.tex and our bibliographic
data is in bibfile.bib. The procedure, then, is as follows:

1. Run latex on example.tex. If the file contains any citations, biblatex will
request the respective data from BibTeX by writing commands to the auxiliary
file example.aux.

2. Run bibtex on example.aux. BibTeX will retrieve the data from bibfile.bib
and write it to the auxiliary file example.bbl in a format which can be pro-
cessed by biblatex.

3. Run latex on example.tex. biblatex will read the data from example.bbl
and print all citations as well as the bibliography.

Whenever a reference to a work which has not been cited before is added, this
procedure must be repeated. This is also the case if the last reference to a work
which has been cited before is removed because some citation labels may change
in this case. In contrast to traditional BibTeX, there is normally no need to run
latex twice after running bibtex as far as the handling of bibliographic data is
concerned.1 Note that this only applies to the most basic case. Using the xref
field or the entryset field may require an additional LaTeX/BibTeX/LaTeX cycle.
Some other facilities provided by biblatex may also require an additional latex
run to get certain references and the page tracking right. In this case, the usual
warning messages such as “There were undefined references” and “Label(s) may
have changed. Rerun to get cross-references right” will be printed. When using
Biber as a backend, the workflow is essentially the same.

3.10.2 Auxiliary Files

By default, the biblatex package uses the main aux file only. Even if there are
citation commands in a file included via \include, which has its own aux file,
you only need to run BibTeX on the main aux file. If you are using refsection
environments in a document (see § 3.10.3) biblatex will create one additional aux
file for every refsection environment. In this case, you also need to run bibtex
on each additional aux file. The name of the additional aux files is the base name
of the main input file with the string -blx and a running number appended at
the end. The biblatex package issues a warning listing the files which require an
additional BibTeX run. With the basic example presented in § 3.10.1, it would issue
the following warning:

Package biblatex Warning: Please (re)run BibTeX on the file(s):
(biblatex) example.aux
(biblatex) and rerun LaTeX afterwards.

If the input file contained three refsection environments, the warning would
read as follows:

Package biblatex Warning: Please (re)run BibTeX on the file(s):

1 That is, unless the defernumbers package option is enabled. This option requires two LaTeX runs
after the data has been exported to the bbl file by BibTeX.

99

(biblatex) example1-blx.aux
(biblatex) example2-blx.aux
(biblatex) example3-blx.aux
(biblatex) and rerun LaTeX afterwards.

Apart from these aux files, biblatex uses an additional bib file with the same
suYx to pass certain control parameters to BibTeX. In the example above, this
file would be named example-blx.bib. In the event of a file name conflict, you
can change the suYx by redefining the macro \blxauxsuffix in the document
preamble. When using Biber, biblatex writes a control file named example.bcf
and ignores \blxauxsuffix. There is also no auxiliary bib file in this case.

Note that biblatex will not overwrite any files it did not create. All auxiliary
files created automatically by this package start with a special signature line. Be-
fore overwriting a file (excluding the main aux file, which is managed by LaTeX),
biblatex inspects the first line of the file to make sure that there is no file name
conflict. If the file in question is missing the signature line, biblatex will immedi-
ately issue an error message and abort before opening the output stream. In this
case you should delete any spurious files accidentally left in the working directory.
If the error persists, there may be a file name conflict with a file found in one of
the TeX installation trees. Since the installation trees usually do not contain any
aux files and the string -blx is fairly exotic in the name of a bib file, this is rather
unlikely but theoretically possible. If you find out that this is indeed the case, you
should redefine \blxauxsuffix permanently in the biblatex configuration file,
biblatex.cfg.

3.10.3 Multiple Bibliographies

In a collection of articles by diVerent authors, such as a conference proceedings
volume for example, it is very common to have one bibliography for each article
rather than a global one for the entire book. In the example below, each article
would be presented as a separate \chapter with its own bibliography. Note that
biblatex creates one additional aux file for every refsection environment. These
files have to be processed by BibTeX as well, see § 3.10.2 for details.

\documentclass{...}
\usepackage{biblatex}
\addbibresource{...}
\begin{document}
\chapter{...}
\begin{refsection}
...
\printbibliography[heading=subbibliography]
\end{refsection}
\chapter{...}
\begin{refsection}
...
\printbibliography[heading=subbibliography]
\end{refsection}
\end{document}

100

If \printbibliography is used inside a refsection environment, it automatically
restricts the scope of the list of references to the enclosing refsection environ-
ment. For a cumulative bibliography which is subdivided by chapter but printed at
the end of the book, use the section option of \printbibliography to select a
reference section, as shown in the next example.

\documentclass{...}
\usepackage{biblatex}
\defbibheading{subbibliography}{%

\section*{References for Chapter \ref{refsection:\therefsection}}}
\addbibresource{...}
\begin{document}
\chapter{...}
\begin{refsection}
...
\end{refsection}
\chapter{...}
\begin{refsection}
...
\end{refsection}
\printbibheading
\printbibliography[section=1,heading=subbibliography]
\printbibliography[section=2,heading=subbibliography]
\end{document}

Note the definition of the bibliography heading in the above example. This is the
definition taking care of the subheadings in the bibliography. The main heading
is generated with a plain \chapter command in this case. The biblatex package
automatically sets a label at the beginning of every refsection environment, us-
ing the standard \label command. The identifier used is the string refsection:
followed by the number of the respective refsection environment. The num-
ber of the current section is accessible via the refsection counter. When using
the section option of \printbibliography, this counter is also set locally. This
means that you may use the counter in heading definitions to print subheadings
like “References for Chapter 3”, as shown above. You could also use the title of
the respective chapter as a subheading by loading the nameref package and using
\nameref instead of \ref:

\usepackage{nameref}
\defbibheading{subbibliography}{%

\section*{\nameref{refsection:\therefsection}}}

Since giving one \printbibliography command for each part of a subdivided
bibliography is tedious, biblatex provides a shorthand. The \bibbysection com-
mand automatically loops over all reference sections. This is equivalent to giving
one \printbibliography command for every section but has the additional ben-
efit of automatically skipping sections without references. In the example above,
the bibliography would then be generated as follows:

\printbibheading

101

\bibbysection[heading=subbibliography]

When using a format with one cumulative bibliography subdivided by chapter
(or any other document division) it may be more appropriate to use refsegment
rather than refsection environments. The diVerence is that the refsection en-
vironment generates labels local to the environment while refsegment does not
aVect the generation of labels, hence they will be unique across the entire docu-
ment. Note that refsegment environments do not require additional aux files. The
next example could also be given in § 3.10.4 because, visually, it creates one global
bibliography subdivided into multiple segments.

\documentclass{...}
\usepackage{biblatex}
\defbibheading{subbibliography}{%

\section*{References for Chapter \ref{refsegment:\therefsegment}}}
\addbibresource{...}
\begin{document}
\chapter{...}
\begin{refsegment}
...
\end{refsegment}
\chapter{...}
\begin{refsegment}
...
\end{refsegment}
\printbibheading
\printbibliography[segment=1,heading=subbibliography]
\printbibliography[segment=2,heading=subbibliography]
\end{document}

The use of refsegment is similar to refsection and there is also a corresponding
segment option for \printbibliography. The biblatex package automatically
sets a label at the beginning of every refsegment environment using the string
refsegment: followed by the number of the respective refsegment environment
as an identifier. There is a matching refsegment counter which may be used in
heading definitions, as shown above. As with reference sections, there is also a
shorthand command which automatically loops over all reference segments:

\printbibheading
\bibbysegment[heading=subbibliography]

This is equivalent to giving one \printbibliography command for every segment.

3.10.4 Subdivided Bibliographies

It is very common to subdivide a bibliography by certain criteria. For example,
you may want to list printed and online resources separately or divide a biblio-
graphy into primary and secondary sources. The former case is straightforward
because you can use the entry type as a criterion for the type and nottype filters
of \printbibliography. The next example also demonstrates how to generate
matching subheadings for the two parts of the bibliography.

102

\documentclass{...}
\usepackage{biblatex}
\addbibresource{...}
\begin{document}
...
\printbibheading
\printbibliography[nottype=online,heading=subbibliography,

title={Printed Sources}]
\printbibliography[type=online,heading=subbibliography,

title={Online Sources}]

\end{document}

You may also use more than two subdivisions:

\printbibliography[type=article,...]
\printbibliography[type=book,...]
\printbibliography[nottype=article,nottype=book,...]

It is even possible to give a chain of diVerent types of filters:

\printbibliography[section=2,type=book,keyword=abc,notkeyword=xyz]

This would print all works cited in reference section 2 whose entry type is @book
and whose keywords field includes the keyword ‘abc’ but not ‘xyz’. When using
bibliography filters in conjunction with a numeric style, see § 3.11.5. If you need
complex filters with conditional expressions, use the filter option in conjunction
with a custom filter defined with \defbibfilter. See § 3.5.9 for details on custom
filters.

\documentclass{...}
\usepackage{biblatex}
\addbibresource{...}
\begin{document}
...
\printbibheading
\printbibliography[keyword=primary,heading=subbibliography,%

title={Primary Sources}]
\printbibliography[keyword=secondary,heading=subbibliography,%

title={Secondary Sources}]
\end{document}

Dividing a bibliography into primary and secondary sources is possible with a
keyword filter, as shown in the above example. In this case, with only two subdivi-
sions, it would be suYcient to use one keyword as filter criterion:

\printbibliography[keyword=primary,...]
\printbibliography[notkeyword=primary,...]

Since biblatex has no way of knowing if an item in the bibliography is considered
to be primary or secondary literature, we need to supply the bibliography filter
with the required data by adding a keywords field to each entry in the bib file.

103

These keywords may then be used as targets for the keyword and notkeyword
filters, as shown above. It may be a good idea to add such keywords right away
while building a bib file.

@Book{key,
keywords = {primary,some,other,keywords},
...

An alternative way of subdividing the list of references are bibliography categories.
They diVer from the keywords-based approach shown in the example above in that
they work on the document level and do not require any changes to the bib file.

\documentclass{...}
\usepackage{biblatex}
\DeclareBibliographyCategory{primary}
\DeclareBibliographyCategory{secondary}
\addtocategory{primary}{key1,key3,key6}
\addtocategory{secondary}{key2,key4,key5}
\addbibresource{...}
\begin{document}
...
\printbibheading
\printbibliography[category=primary,heading=subbibliography,%

title={Primary Sources}]
\printbibliography[category=secondary,heading=subbibliography,%

title={Secondary Sources}]
\end{document}

In this case it would also be suYcient to use one category only:

\printbibliography[category=primary,...]
\printbibliography[notcategory=primary,...]

It is still a good idea to declare all categories used in the bibliography explicitly
because there is a \bibbycategory command which automatically loops over all
categories. This is equivalent to giving one \printbibliography command for
every category, in the order in which they were declared.

\documentclass{...}
\usepackage{biblatex}
\DeclareBibliographyCategory{primary}
\DeclareBibliographyCategory{secondary}
\addtocategory{primary}{key1,key3,key6}
\addtocategory{secondary}{key2,key4,key5}
\defbibheading{primary}{\section*{Primary Sources}}
\defbibheading{secondary}{\section*{Secondary Sources}}
\addbibresource{...}
\begin{document}
...
\printbibheading
\bibbycategory
\end{document}

104

The handling of the headings is diVerent from \bibbysection and \bibbysegment
in this case. \bibbycategory uses the name of the current category as a heading
name. This is equivalent to passing heading=〈category〉 to \printbibliography
and implies that you need to provide a matching heading for every category.

3.10.5 Entry Sets

An entry set is a group of entries which are cited as a single reference and listed
as a single item in the bibliography. The biblatex package supports two types of
entry sets. Static entry sets are defined in the bib file like any other entry. Dynamic
entry sets are defined with \defbibentryset (§ 3.5.10) on a per-document/per-
refsection basis in the document preamble or the document body. This section
deals with the definition of entry sets; style authors should also see § 4.11.1 for
further information.

3.10.5.1 Static entry sets

Static entry sets are defined in the bib file like any other entry. When using Biber Biber only

as backend, defining an entry set is as simple as adding an entry of type @set. The
entry has an entryset field defining the members of the set as a comma-separated
list of entry keys:

@Set{set1,
entryset = {key1,key2,key3},

}

Entries may be part of a set in one document/refsection and stand-alone references
in another one, depending on the presence of the @set entry. If the @set entry is
cited, the set members are grouped automatically. If not, they will work like any
regular entry.

When using BibTeX, which has no native support for entry sets, setting up entry
sets involves more work. BibTeX requires entryset and crossref fields to be used
in a special way. The members of the set are given in the entryset field of the @set
entry. The @set entry also requires a crossref field which points to the first key
in the entryset field. In addition to that, all members of the set require entryset
fields which are reverse pointers to the entry key of the @set head entry:

@Set{set1,
entryset = {key1,key2,key3},
crossref = {key1},

}
@Article{key1,

entryset = {set1},
author = {...},
title = {...},
...

}
@InCollection{key2,

entryset = {set1},
author = {...},
title = {...},

105

...
}
@Article{key3,

entryset = {set1},
author = {...},
title = {...},
...

}

Note that citing any set member will automatically load the entire set with BibTeX.
If you want to refer to an item as part of a set in one document/refsection and as
a stand-alone reference in another one, you need two distinct entries with BibTeX.

3.10.5.2 Dynamic entry sets Biber only

Dynamic entry sets are set up and work much like static ones. The main diVerence
is that they are defined in the document preamble or on the fly in the document
body using the \defbibentryset command from § 3.5.10:

\defbibentryset{set1}{key1,key2,key3}

Dynamic entry sets in the document body are local to the enclosing refsection
environment, if any. Otherwise, they are assigned to reference section 0. Those
defined in the preamble are assigned to reference section 0. Note that dynamic
entry sets require Biber. They will not work with any other backend.

3.10.6 Electronic Publishing Information

The biblatex package provides three fields for electronic publishing information:
eprint, eprinttype, and eprintclass. The eprint field is a verbatim field sim-
ilar to doi which holds the identifier of the item. The eprinttype field holds
the resource name, i. e., the name of the site or electronic archive. The optional
eprintclass field is intended for additional information specific to the resource
indicated by the eprinttype field. This could be a section, a path, classification
information, etc. If the eprinttype field is available, the standard styles will use it
as a literal label. In the following example, they would print “Resource: identifier”
rather than the generic “eprint: identifier”:

eprint = {identifier},
eprinttype = {Resource},

The standard styles feature dedicated support for a few online archives. For arXiv
references, put the identifier in the eprint field and the string arxiv in the
eprinttype field:

eprint = {math/0307200v3},
eprinttype = {arxiv},

For papers which use the new identifier scheme (April 2007 and later) add the
primary classification in the eprintclass field:

eprint = {1008.2849v1},
eprinttype = {arxiv},

106

eprintclass = {cs.DS},

There are two aliases which ease the integration of arXiv entries. archiveprefix
is treated as an alias for eprinttype; primaryclass is an alias for eprintclass.
If hyperlinks are enabled, the eprint identifier will be transformed into a link to
arxiv.org. See the package option arxiv in § 3.1.2.1 for further details.

For jstor references, put the stable jstor number in the eprint field and the
string jstor in the eprinttype field:

eprint = {number},
eprinttype = {jstor},

When using jstor’s export feature to export citations in BibTeX format, jstor uses
the url field by default (where the 〈number〉 is a unique and stable identifier):

url = {http://www.jstor.org/stable/number},

While this will work as expected, full urls tend to clutter the bibliography. With
the eprint fields, the standard styles will use the more readable “jstor: 〈number〉”
format which also supports hyperlinks. The 〈number〉 becomes a clickable link if
hyperref support is enabled.

For PubMed references, put the stable PubMed identifier in the eprint field
and the string pubmed in the eprinttype field. This means that:

url = {http://www.ncbi.nlm.nih.gov/pubmed/pmid},

becomes:

eprint = {pmid},
eprinttype = {pubmed},

and the standard styles will print “pmid: 〈pmid〉” instead of the lengthy url. If
hyperref support is enabled, the 〈pmid〉 will be a clickable link to PubMed.

For handles (hdls), put the handle in the eprint field and the string hdl in
the eprinttype field:

eprint = {handle},
eprinttype = {hdl},

For Google Books references, put Google’s identifier in the eprint field and the
string googlebooks in the eprinttype field. This means that, for example:

url = {http://books.google.com/books?id=XXu4AkRVBBoC},

would become:

eprint = {XXu4AkRVBBoC},
eprinttype = {googlebooks},

107

and the standard styles would print “Google Books: XXu4AkRVBBoC” instead of the
full url. If hyperref support is enabled, the identifier will be a clickable link to
Google Books.1

Note that eprint is a verbatim field. Always give the identifier in its unmodified
form. For example, there is no need to replace _ with _. Also see § 4.11.2 on how
to add dedicated support for other eprint resources.

3.10.7 External Abstracts and Annotations

Styles which print the fields abstract and/or annotation may support an al-
ternative way of adding abstracts or annotations to the bibliography. Instead of
including the text in the bib file, it may also be stored in an external LaTeX file.
For example, instead of saying

@Article{key1,
...
abstract = {This is an abstract of entry ‘key1’.}

}

in the bib file, you may create a file named bibabstract-key1.tex and put the
abstract in this file:

This is an abstract of entry ‘key1’.
\endinput

The name of the external file must be the entry key prefixed with bibabstract-
or bibannotation-, respectively. You can change these prefixes by redefining
\bibabstractprefix and \bibannotationprefix. Note that this feature needs to
be enabled explicitly by setting the package option loadfiles from § 3.1.2.1. The
option is disabled by default for performance reasons. Also note that any abstract
and annotation fields in the bib file take precedence over the external files. Us-
ing external files is strongly recommended if you have long abstracts or a lot of
annotations since this may increase memory requirements significantly. It is also
more convenient to edit the text in a dedicated LaTeX file. Style authors should see
§ 4.11.3 for further information.

3.11 Hints and Caveats

This section provides additional usage hints and addresses some common problems
and potential misconceptions.

3.11.1 Usage with KOMA-Script Classes

When using biblatex in conjunction with one of the scrbook, scrreprt, or
scrartcl classes, the headings bibliography and shorthands from § 3.5.7 are

1 Note that the Google Books id seems to be a bit of an ‘internal’ value. As of this writing, there
does not seem to be any way to search for an id on Google Books. You may prefer to use the url
in this case.

108

responsive to the bibliography-related options of these classes.1 You can over-
ride the default headings by using the heading option of \printbibliography,
\printbibheading and \printshorthands. See §§ 3.5.2, 3.5.3, 3.5.7 for details.
All default headings are adapted at load-time such that they blend with the be-
havior of these classes. If one of the above classes is detected, biblatex will also
provide the following additional tests which may be useful in custom heading def-
initions:

\ifkomabibtotoc{〈true〉}{〈false〉}

Expands to 〈true〉 if the class would add the bibliography to the table of contents,
and to 〈false〉 otherwise.

\ifkomabibtotocnumbered{〈true〉}{〈false〉}

Expands to 〈true〉 if the class would add the bibliography to the table of con-
tents as a numbered section, and to 〈false〉 otherwise. If this test yields 〈true〉,
\ifkomabibtotoc will always yield 〈true〉 as well, but not vice versa.

3.11.2 Usage with the Memoir Class

When using biblatex with the memoir class, most class facilites for adapting the
bibliography have no eVect. Use the corresponding facilities of this package in-
stead (§§ 3.5.2, 3.5.7, 3.5.8). Instead of redefining memoir’s \bibsection, use the
heading option of \printbibliography and \defbibheading (§§ 3.5.2 and 3.5.7).
Instead of \prebibhook and \postbibhook, use the prenote and postnote op-
tions of \printbibliography and \defbibnote (§§ 3.5.2 and 3.5.8). All default
headings are adapted at load-time such that they blend well with the default lay-
out of this class. The default headings bibliography and shorthands (§ 3.5.7)
are also responsive to memoir’s \bibintoc and \nobibintoc switches. The length
register \bibitemsep is used by biblatex in a way similar to memoir (§ 3.8.3).
This section also introduces some additional length registers which correspond to
memoir’s \biblistextra. Lastly, \setbiblabel does not map to a single facility
of the biblatex package since the style of all labels in the bibliography is con-
trolled by the bibliography style. See § 4.2.2 in the author section of this manual
for details. If the memoir class is detected, biblatex will also provide the following
additional test which may be useful in custom heading definitions:

\ifmemoirbibintoc{〈true〉}{〈false〉}

Expands to 〈true〉 or 〈false〉, depending on memoir’s \bibintoc and \nobibintoc
switches. This is a LaTeX frontend to memoir’s \ifnobibintoc test. Note that the
logic of the test is reversed.

1 This applies to the traditional syntax of these options (bibtotoc and bibtotocnumbered) as well
as to the 〈key〉=〈value〉 syntax introduced in koma-Script 3.x, i. e., to bibliography=nottotoc,
bibliography=totoc, and bibliography=totocnumbered, The global toc=bibliography and
toc=bibliographynumbered options as well as their aliases are detected as well. In any case, the
options must be set globally in the optional argument to \documentclass.

109

3.11.3 Page Numbers in Citations

If the 〈postnote〉 argument to a citation command is a page number or page range,
biblatex will automatically prefix it with ‘p.’ or ‘pp.’ by default. This works reli-
ably in typical cases, but sometimes manual intervention may be required. In this
case, it is important to understand how this argument is handled in detail. First,
biblatex checks if the postnote is an Arabic or Roman numeral (case insensitive).
If this test succeeds, the postnote is considered as a single page or other num-
ber which will be prefixed with ‘p.’ or some other string which depends on the
pagination field (see § 2.3.10). If it fails, a second test is performed to find out
if the postnote is a range or a list of Arabic or Roman numerals. If this test suc-
ceeds, the postnote will be prefixed with ‘pp.’ or some other string in the plural
form. If it fails as well, the postnote is printed as is. Note that both tests expand
the 〈postnote〉. All commands used in this argument must therefore be robust or
prefixed with \protect. Here are a few examples of 〈postnote〉 arguments which
will be correctly recognized as a single number, a range of numbers, or a list of
numbers, respectively:

\cite[25]{key}
\cite[vii]{key}
\cite[XIV]{key}
\cite[34--38]{key}
\cite[iv--x]{key}
\cite[185/86]{key}
\cite[XI \& XV]{key}
\cite[3, 5, 7]{key}
\cite[vii--x; 5, 7]{key}

In some other cases, however, the tests may get it wrong and you need to resort
to the auxiliary commands \pno, \ppno, and \nopp from § 3.6.8. For example,
suppose a work is cited by a special pagination scheme consisting of numbers and
letters. In this scheme, the string ‘27a’ would mean ‘page 27, part a’. Since this
string does not look like a number or a range to biblatex, you need to force the
prefix for a single number manually:

\cite[\pno~27a]{key}

There is also a \ppno command which forces a range prefix as well as a \nopp
command which suppresses all prefixes:

\cite[\ppno~27a--28c]{key}
\cite[\nopp 25]{key}

These commands may be used anywhere in the 〈postnote〉 argument. They may
also be used multiple times. For example, when citing by volume and page number,
you may want to suppress the prefix at the beginning of the postnote and add it in
the middle of the string:

\cite[VII, \pno~5]{key}
\cite[VII, \pno~3, \ppno~40--45]{key}
\cite[see][\ppno~37--46, in particular \pno~40]{key}

110

There are also two auxiliary command for suYxes like ‘the following page(s)’. In-
stead of inserting such suYxes literally (which would require \ppno to force a
prefix):

\cite[\ppno~27~sq.]{key}
\cite[\ppno~55~sqq.]{key}

use the auxiliary commands \psq and \psqq. Note that there is no space between
the number and the command. This space will be inserted automatically and may
be modified by redefining the macro \sqspace.

\cite[27\psq]{key}
\cite[55\psqq]{key}

Since the postnote is printed without any prefix if it includes any character which
is not an Arabic or Roman numeral, you may also type the prefix manually:

\cite[p.~5]{key}

It is possible to suppress the prefix on a per-entry basis by setting the pagination
field of an entry to ‘none’, see § 2.3.10 for details. If you do not want any prefixes
at all or prefer to type them manually, you can also disable the entire mechanism
in the document preamble or the configuration file as follows:

\DeclareFieldFormat{postnote}{#1}

The 〈postnote〉 argument is handled as a field and the formatting of this field is
controlled by a field formatting directive which may be freely redefined. The above
definition will simply print the postnote as is. See §§ 4.3.2 and 4.4.2 in the author
guide for further details.

3.11.4 Name Parts and Name Spacing

The biblatex package gives users and style authors very fine-grained control of
name spacing and the line-breaking behavior of names, especially when they are
using Biber as backend. The commands discussed in the following are documented
in §§ 3.8.1 and 4.10.1. This section is meant to give an overview of how they are
put together. A note on terminology: a name part is a basic part of the name, for
example the first or the last name. Each part of a name may be a single name or
it may be composed of multiple names. For example, the name part ‘first name’
may be composed of a first and a middle name. The latter are referred to as name
elements in this section. Let’s consider a simple name first: “John Edward Doe”.
This name is composed of the following parts:

First John Edward
Prefix —
Last Doe
SuYx —

The spacing and the line-breaking behavior of names is controlled by four macros:

111

a=\bibnamedelima Inserted by the backend after the first element of every
name part if that element is less than three characters long
and before the last element of every name part.

b=\bibnamedelimb Inserted by the backend between all elements of a name
part where \bibnamedelima does not apply.

c=\bibnamedelimc Inserted by a formatting directive between the name prefix
and the last name if useprefix=true. If
useprefix=false, \bibnamedelimd is used instead.

d=\bibnamedelimd Inserted by a formatting directive between name parts
where \bibnamedelimc does not apply.

i =\bibnamedelimi Replaces \bibnamedelima/b after initials

This is how the delimiters are employed:

John
a
Edward

d
Doe

Initials in the bib file get a special delimiter:

J.
i
Edward

d
Doe

Let’s consider a more complex name: “Charles-Jean Étienne Gustave Nicolas de La
Vallée Poussin”. This name is composed of the following parts:

First Charles-Jean Étienne Gustave Nicolas
Prefix de
Last La Vallée Poussin
SuYx —

The delimiters:

Charles-Jean
b
Étienne

b
Gustave

a
Nicolas

d
de

c
La

a
Vallée

a
Poussin

Note that \bibnamedelima/b/i are inserted by the backend. The backend pro-
cesses the name parts and takes care of the delimiters between the elements that
make up a name part, processing each part individually. In contrast to that, the de-
limiters between the parts of the complete name (\bibnamedelimc/d) are added
by name formatting directives at a later point in the processing chain. The spacing
and punctuation of initals is also handled by the backend and may be customized
by redefining the following three macros:

a=\bibinitperiod Inserted by the backend after initials.
b=\bibinitdelim Inserted by the backend between multiple initials.
c=\bibinithyphendelim Inserted by the backend between the initials of

hyphenated name parts, replacing \bibinitperiod
and \bibinitdelim.

This is how they are employed:

J.
a b
E.

a
Doe

K.-
c
H.

a
Mustermann

112

3.11.5 Bibliography Filters and Citation Labels

The citation labels generated by this package are assigned to the full list of ref-
erences before it is split up by any bibliography filters. They are guaranteed to be
unique across the entire document (or a refsection environment), no matter how
many bibliography filters you are using. When using a numeric citation scheme,
however, this will most likely lead to discontinuous numbering in split bibliogra-
phies. Use the defernumbers package option to avoid this problem. If this option
is enabled, numeric labels are assigned the first time an entry is printed in any
bibliography.

3.11.6 Active Characters in Bibliography Headings

Packages using active characters, such as babel, csquotes, or underscore, usu-
ally do not make them active until the beginning of the document body to avoid
interference with other packages. A typical example of such an active character is
the Ascii quote ", which is used by various language modules of the babel package.
If shorthands such as "< and "a are used in the argument to \defbibheading and
the headings are defined in the document preamble, the non-active form of the
characters is saved in the heading definition. When the heading is typeset, they do
not function as a command but are simply printed literally. The most straightfor-
ward solution consists in moving \defbibheading after \begin{document}. Alter-
natively, you may use babel’s \shorthandon and \shorthandoff commands to
temporarily make the shorthands active in the preamble. The above also applies
to bibliography notes and the \defbibnote command.

3.11.7 Grouping in Reference Sections and Segments

All LaTeX environments enclosed in \begin and \end form a group. This may have
undesirable side eVects if the environment contains anything that does not expect
to be used within a group. This issue is not specific to refsection and refsegment
environments, but it obviously applies to them as well. Since these environments
will usually enclose much larger portions of the document than a typical itemize
or similar environment, they are simply more likely to trigger problems related
to grouping. If you observe any malfunctions after adding refsection environ-
ments to a document (for example, if anything seems to be ‘trapped’ inside the
environment), try the following syntax instead:

\chapter{...}
\refsection
...
\endrefsection

This will not from a group, but otherwise works as usual. As far as biblatex is con-
cerned, it does not matter which syntax you use. The alternative syntax is also sup-
ported by the refsegment environment. Note that the commands \newrefsection
and \newrefsegment do not form a group. See §§ 3.5.4 and 3.5.5 for details.

113

4 Author Guide

This part of the manual documents the author interface of the biblatex package.
The author guide covers everything you need to know in order to write new ci-
tation and bibliography styles or localization modules. You should read the user
guide first before continuing with this part of the manual.

4.1 Overview

Before we get to the commands and facilities provided by biblatex, we will have
a look at some of its fundamental concepts. The biblatex package interacts with
BibTeX in a way that is somewhat diVerent from the traditional way of doing
things. Most notably, the bbl file is used diVerently and there is only one bst
file which implements a structured data interface rather than exporting printable
data. With LaTeX’s standard bibliographic facilities, a document includes any num-
ber of citation commands in the document body plus \bibliographystyle and
\bibliography, usually towards the end of the document. The location of the
former is arbitrary, the latter marks the spot where the list of references is to be
printed:

\documentclass{...}
\begin{document}
\cite{...}
...
\bibliographystyle{...}
\bibliography{...}
\end{document}

Processing this files requires that a certain procedure be followed. This procedure
is as follows:

1. Run latex: On the first run, \bibstyle and \bibdata commands are written
to the aux file, along with \citation commands for all citations. At this point,
the references are undefined because LaTeX is waiting for BibTeX to supply the
required data. There is also no bibliography yet.

2. Run bibtex: BibTeX writes a thebibliography environment to the bbl file,
supplying all entries from the bib file which were requested by the \citation
commands in the aux file.

3. Run latex: Starting with the second run, the \bibitem commands in the
thebibliography environment write one \bibcite command for each bib-
liography entry to the aux file. These \bibcite commands define the citation
labels used by \cite. However, the references are still undefined because the
labels are not available until the end of this run.

4. Run latex: Starting with the third run, the citation labels are defined as the
aux file is read in at the end of the preamble. All citations can now be printed.

114

Note that all bibliographic data is written to the bbl file in the final format. The
bbl file is read in and processed like any printable section of the document. For
example, consider the following entry in a bib file:

@Book{companion,
author = {Michel Goossens and Frank Mittelbach and Alexander Samarin},
title = {The LaTeX Companion},
publisher = {Addison-Wesley},
address = {Reading, Mass.},
year = {1994},

}

With the plain.bst style, BibTeX exports this entry to the bbl file as follows:

\bibitem{companion}
Michel Goossens, Frank Mittelbach, and Alexander Samarin.
\newblock {\em The LaTeX Companion}.
\newblock Addison-Wesley, Reading, Mass., 1994.

By default, LaTeX generates numeric citation labels, hence \bibitem writes lines
such as the following to the aux file:

\bibcite{companion}{1}

Implementing a diVerent citation style implies that more data has to be transferred
via the aux file. With the natbib package, for example, the aux file contains lines
like this one:

\bibcite{companion}{{1}{1994}{{Goossens et~al.}}{{Goossens, Mittelbach,
and Samarin}}}

The biblatex package supports citations in any arbitrary format, hence citation
commands need access to all bibliographic data. What this would mean within
the scope of the procedure outlined above becomes obvious when looking at the
output of the jurabib package which also makes all bibliographic data available
in citations:

\bibcite{companion}{{Goossens\jbbfsasep Mittelbach\jbbstasep Samarin}%
{}{{0}{}{book}{1994}{}{}{}{}{Reading, Mass.\bpubaddr{}Addison-Wesley%
\bibbdsep{} 1994}}{{The LaTeX Companion}{}{}{2}{}{}{}{}{}}{\bibnf
{Goossens}{Michel}{M.}{}{}\Bibbfsasep\bibnf{Mittelbach}{Frank}{F.}%
{}{}\Bibbstasep\bibnf{Samarin}{Alexander}{A.}{}{}}{\bibtfont{The
LaTeX Companion}.\ \apyformat{Reading, Mass.\bpubaddr{}
Addison-Wesley\bibbdsep{} 1994}}}

In this case, the contents of the entire thebibliography environment are eVec-
tively transferred via the aux file. The data is read from the bbl file, written to the
aux file, read back from the aux file and then kept in memory. The bibliography
itself is still generated as the bbl file is read in. The biblatex package would also
be forced to cycle all data through the aux file. This implies processing overhead
and is also redundant because the data has to be kept in memory anyway.

The traditional procedure is based on the assumption that the full bibliographic
data of an entry is only required in the bibliography and that all citations use

115

short labels. This makes it very eVective in terms of memory requirements, but
it also implies that it does not scale well. That is why biblatex takes a diVer-
ent approach. First of all, the document structure is slightly diVerent. Instead of
using \bibliography in the document body, database files are specified in the
preamble with \addbibresource, \bibliographystyle is omitted entirely (all
features are controlled by package options), and the bibliography is printed using
\printbibliography:

\documentclass{...}
\usepackage[...]{biblatex}
\addbibresource{...}
\begin{document}
\cite{...}
...
\printbibliography
\end{document}

In order to streamline the whole procedure, biblatex essentially employs the bbl
file like an aux file, rendering \bibcite obsolete. We then get the following proce-
dure:

1. Run latex: The first step is similar to the traditional procedure described
above: \bibstyle and \bibdata commands are written to the aux file, along
with \citation commands for all citations. We then wait for BibTeX to sup-
ply the required data. Since biblatex uses a special bst file which imple-
ments its data interface on the BibTeX end, the \bibstyle command is always
\bibstyle{biblatex}.

2. Run bibtex: BibTeX supplies those entries from the bib file which were re-
quested by the \citation commands in the aux file. However, it does not
write a printable bibliography to the bbl file, but rather a structured represen-
tation of the bibliographic data. Just like an aux file, this bbl file does not print
anything when read in. It merely puts data in memory.

3. Run latex: Starting with the second run, the bbl file is processed right at the
beginning of the document body, just like an aux file. From this point on, all
bibliographic data is available in memory so that all citations can be printed
right away.1 The citation commands have access to the complete bibliographic
data, not only to a predefined label. The bibliography is generated from mem-
ory using the same data and may be filtered or split as required.

Let’s consider the sample entry given above once more:

@Book{companion,
author = {Michel Goossens and Frank Mittelbach and Alexander Samarin},
title = {The LaTeX Companion},

1 If the defernumbers package option is enabled biblatex uses an alogrithm similar to the tradi-
tional procedure to generate numeric lables. In this case, the numbers are assigned as the biblio-
graphy is printed and then cycled through the aux file. It will take an additional LaTeX run for
them to be picked up in citations.

116

publisher = {Addison-Wesley},
address = {Reading, Mass.},
year = {1994},

}

With biblatex, this entry is essentially exported in the following format:

\entry{companion}{book}{}
\name{author}{3}{%

{{Goossens}{G.}{Michel}{M.}{}{}{}{}}%
{{Mittelbach}{M.}{Frank}{F.}{}{}{}{}}%
{{Samarin}{S.}{Alexander}{A.}{}{}{}{}}%

}
\list{publisher}{1}{%

{Addison-Wesley}%
}
\list{location}{1}{%

{Reading, Mass.}%
}
\field{title}{The LaTeX Companion}
\field{year}{1994}

\endentry

As seen in this example, the data is presented in a structured format that resembles
the structure of a bib file to some extent. At this point, no decision concerning
the final format of the bibliography entry has been made. The formatting of the
bibliography and all citations is controlled by LaTeX macros, which are defined in
bibliography and citation style files.

4.2 Bibliography Styles

A bibliography style is a set of macros which print the entries in the bibliography.
Such styles are defined in files with the suYx bbx. The biblatex package loads
the selected bibliography style file at the end of the package. Note that a small
repertory of frequently used macros shared by several of the standard bibliography
styles is included in biblatex.def. This file is loaded at the end of the package as
well, prior to the selected bibliography style.

4.2.1 Bibliography Style Files

Before we go over the individual components of a bibliography style, consider this
example of the overall structure of a typical bbx file:

\ProvidesFile{example.bbx}[2006/03/15 v1.0 biblatex bibliography style]

\defbibenvironment{bibliography}
{...}
{...}
{...}

\defbibenvironment{shorthands}
{...}
{...}
{...}

117

\InitializeBibliographyStyle{...}
\DeclareBibliographyDriver{article}{...}
\DeclareBibliographyDriver{book}{...}
\DeclareBibliographyDriver{inbook}{...}
...
\DeclareBibliographyDriver{shorthands}{...}
\endinput

The main structure of a bibliography style file consists of the following commands:

\RequireBibliographyStyle{〈style〉}

This command is optional and intended for specialized bibliography styles built on
top of a more generic style. It loads the bibliography style style.bbx.

\InitializeBibliographyStyle{〈code〉}

Specifies arbitrary 〈code〉 to be inserted at the beginning of the bibliography, but
inside the group formed by the bibliography. This command is optional. It may be
useful for definitions which are shared by several bibliography drivers but not used
outside the bibliography. Keep in mind that there may be several bibliographies in
a document. If the bibliography drivers make any global assignments, they should
be reset at the beginning of the next bibliography.

\DeclareBibliographyDriver{〈entrytype〉}{〈code〉}

Defines a bibliography driver. A ‘driver’ is a macro which handles a specific entry
type. The 〈entrytype〉 corresponds to the entry type used in bib files, specified
in lowercase letters (see § 2.1). The type shorthands has a special meaning. The
shorthands driver handles all entries in the list of shorthands. The 〈entrytype〉
argument may also be an asterisk. In this case, the driver serves as a fallback
which is used if no specific driver for the entry type has been defined. The 〈code〉 is
arbitrary code which typesets all bibliography entries of the respective 〈entrytype〉.
This command is mandatory. Every bibliography style should provide a driver for
each entry type.

\DeclareBibliographyAlias{〈alias〉}{〈entrytype〉}

If a bibliography driver covers more than one entry type, this command may be
used to define an alias. This command is optional. The 〈entrytype〉 argument may
also be an asterisk. In this case, the alias serves as a fallback which is used if no
specific driver for the entry type has been defined.

\DeclareBibliographyOption{〈key〉}[〈value〉]{〈code〉}

This command defines additional preamble options in 〈key〉=〈value〉 format. The
〈key〉 is the option key. The 〈code〉 is arbitrary TeX code to be executed whenever
the option is used. The value passed to the option is passed on to the 〈code〉 as #1.
The optional 〈value〉 is a default value to be used if the bare key is given without
any value. This is useful for boolean switches. For example, with a definition like
the following:

118

\DeclareBibliographyOption{somekey}[true]{...}

giving ‘somekey’ without a value is equivalent to ‘somekey=true’.

\DeclareEntryOption{〈key〉}[〈value〉]{〈code〉}

Similar to \DeclareBibliographyOption but defines options which are settable
on a per-entry basis in the options field from § 2.2.3. The 〈code〉 is executed
whenever biblatex prepares the data of the entry for use by a citation command
or a bibliography driver.

4.2.2 Bibliography Environments

Apart from defining bibliography drivers, the bibliography style is also responsi-
ble for the environments which control the layout of the bibliography and the
list of shorthands. These environments are defined with \defbibenvironment. By
default, \printbibliography uses the environment bibliography. Here is a def-
inition suitable for a bibliography style which does not print any labels in the
bibliography:

\defbibenvironment{bibliography}
{\list

{}
{\setlength{\leftmargin}{\bibhang}%
\setlength{\itemindent}{-\leftmargin}%
\setlength{\itemsep}{\bibitemsep}%
\setlength{\parsep}{\bibparsep}}}

{\endlist}
{\item}

This definition employs a list environment with hanging indentation, using the
\bibhang length register provided by biblatex. It allows for a certain degree
of configurability by using \bibitemsep and \bibparsep, two length registers
provided by biblatex for this very purpose (see § 4.10.3). The authoryear and
authortitle bibliography styles use a definition similar to this example.

\defbibenvironment{bibliography}
{\list

{\printfield[labelnumberwidth]{labelnumber}}
{\setlength{\labelwidth}{\labelnumberwidth}%
\setlength{\leftmargin}{\labelwidth}%
\setlength{\labelsep}{\biblabelsep}%
\addtolength{\leftmargin}{\labelsep}%
\setlength{\itemsep}{\bibitemsep}%
\setlength{\parsep}{\bibparsep}}%
\renewcommand*{\makelabel}[1]{\hss##1}}

{\endlist}
{\item}

Some bibliography styles print labels in the bibliography. For example, a bibliogra-
phy style designed for a numeric citation scheme will print the number of every
entry such that the bibliography looks like a numbered list. In the first example,

119

the first argument to \list was empty. In this example, we need it to insert the
number, which is provided by biblatex in the labelnumber field. We also employ
several length registers and other facilities provided by biblatex, see §§ 4.10.4
and 4.10.5 for details. The numeric bibliography style uses the definition given
above. The alphabetic style is similar, except that labelnumber is replaced by
labelalpha and labelnumberwidth by labelalphawidth.

The list of shorthands is handled in a similar way. \printshorthands uses
the environment shorthands by default. A typical example is given below. See
§§ 4.10.4 and 4.10.5 for details on the length registers and facilities used in this
example.

\defbibenvironment{shorthands}
{\list

{\printfield[shorthandwidth]{shorthand}}
{\setlength{\labelwidth}{\shorthandwidth}%
\setlength{\leftmargin}{\labelwidth}%
\setlength{\labelsep}{\biblabelsep}%
\addtolength{\leftmargin}{\labelsep}%
\setlength{\itemsep}{\bibitemsep}%
\setlength{\parsep}{\bibparsep}%
\renewcommand*{\makelabel}[1]{##1\hss}}}

{\endlist}
{\item}

4.2.3 Bibliography Drivers

Before we go over the commands which form the data interface of the biblatex
package, it may be instructive to have a look at the structure of a bibliography
driver. Note that the example given below is greatly simplified, but still functional.
For the sake of readability, we omit several fields which may be part of a @book
entry and also simplify the handling of those which are considered. The main
point is to give you an idea of how a driver is structured. For information about
the mapping of BibTeX’s fields to biblatex’s data types, see § 2.2.

\DeclareBibliographyDriver{book}{%
\printnames{author}%
\newunit\newblock
\printfield{title}%
\newunit\newblock
\printlist{publisher}%
\newunit
\printlist{location}%
\newunit
\printfield{year}%
\finentry}

At this point, there is still one piece missing: the formatting directives used by
\printnames, \printlist, and \printfield. To give you an idea of what a for-
matting directive looks like, here are some fictional ones used by our sample driver.
Field formats are straightforward, the value of the field is passed to the formatting

120

directive as an argument which may be formatted as desired. The following direc-
tive will simply wrap its argument in an \emph command:

\DeclareFieldFormat{title}{\emph{#1}}

List formats are slightly more complex. After splitting up the list into individual
items, biblatex will execute the formatting directive once for every item in the
list. The item is passed to the directive as an argument. The separator to be in-
serted between the indivdual items in the list is also handled by the corresponding
directive, hence we have to check whether we are in the middle of the list or at
the end when inserting it.

\DeclareListFormat{location}{%
#1%
\ifthenelse{\value{listcount}<\value{liststop}}

{\addcomma\space}
{}}

Formatting directives for names are similar to those for literal lists, but the in-
dividual items in the list are names which are automatically dissected into their
components. The list formatting directive is executed once for each name in the
list and the components of the name are passed to the formatting directive as sep-
arate arguments. For example, #1 is the last name and #3 is the first name. Here is
a simplified example:

\DeclareNameFormat{author}{%
\ifthenelse{\value{listcount}=1}

{#1%
\ifblank{#3}{}{\addcomma\space #3}}
{\ifblank{#3}{}{#3\space}%
#1}%

\ifthenelse{\value{listcount}<\value{liststop}}
{\addcomma\space}
{}}

The above directive reverses the name of the first author (“Last, First”) and prints
the remaining names in their regular sequence (“First Last”). Note that the only
component which is guaranteed to be available is the last name, hence we have to
check which parts of the name are actually present. If a certain component of a
name is not available, the corresponding argument will be blank. As with directives
for literal lists, the separator to be inserted between the indivdual items in the list
is also handled by the formatting directive, hence we have to check whether we
are in the middle of the list or at the end when inserting it. This is what the second
\ifthenelse test does.

4.2.4 Special Fields

The following lists and fields are used by biblatex to pass data to bibliography
drivers and citation commands. They are not used in bib files but defined auto-
matically by the package. From the perspective of a bibliography or citation style,
they are not diVerent from the fields in a bib file.

121

4.2.4.1 Generic Fields

entrykey field (string)

The entry key of an item in the bib file. This is the string used by biblatex and
BibTeX to identify an entry in the bib file.

childentrykey field (string)

When citing a subentry of an entry set, biblatex provides the data of the parent
@set entry to citation commands. This implies that the entrykey field holds the
entry key of the parent. The entry key of the child entry being cited is provided in
the childentrykey field. This field is only available when citing a subentry of an
entry set.

entrytype field (string)

The entry type (@book, @inbook, etc.), given in lowercase letters.

childentrytype field (string)

When citing a subentry of an entry set, biblatex provides the data of the parent
@set entry to citation commands. This implies that the entrytype field holds the
entry type of the parent. The entry type of the child entry being cited is provided
in the childentrytype field. This field is only available when citing a subentry of
an entry set.

entrysetcount field (integer)

This field holds an integer indicating the position of a set member in the entry set
(starting at 1). This field is only available in the subentries of an entry set.

hash field (string) Biber only

This field is special in that it is only available locally in name formatting directives.
It holds a hash string which uniquely identifies individual names in a name list.
This information is available for all names in all name lists. See also namehash and
fullhash.

namehash field (string)

A hash string which uniquely identifies the labelname list. This is useful for re-
currence checks. For example, a citation style wich replaces recurrent authors or
editors with a string like ‘idem’ could save the namehash field with \savefield
and use it in a comparison with \iffieldequals later (see §§ 4.6.1 and 4.6.2).
The namehash is derived from the truncated labelname list, i. e., it is responsive to
maxnames and minnames. See also hash and fullhash.

fullhash field (string)

A hash string which uniquely identifies the labelname list. This fields diVers from
namehash in two details: 1) The shortauthor and shorteditor lists are ignored
when generating the hash. 2) The hash always refers to the full list, ignoring
maxnames and minnames. See also hash and namehash.

122

pageref list (literal)

If the backref package option is enabled, this list holds the page numbers of the
pages on which the respective bibliography entry is cited. If there are refsection
environments in the document, the back references are local to the reference sec-
tions.

sortinit field (literal)

This field holds the initial letter of the string used during sorting. This is useful
when subdividing the bibliography alphabetically.

4.2.4.2 Fields for Use in Citation Labels

labelalpha field (literal)

A label similar to the labels generated by the alpha.bst style of traditional BibTeX.
This label consists of initials drawn from the labelname list plus the last two
digits of the publication year. The label field may be used to override its non-
numeric portion. If the label field is defined, biblatex will use its value and ap-
pend the last two digits of the publication year when generating labelalpha. The
shorthand field may be used to override the entire label. If defined, labelalpha
is the shorthand rather than an automatically generated label. A complete ‘al-
phabetic’ label consists of the fields labelalpha plus extraalpha. Note that the
labelalpha and extraalpha fields need to be requested with the package option
labelalpha (§ 3.1.2.3). See also extraalpha as well as \labelalphaothers in
§ 3.8.1.

extraalpha field (integer)

The ‘alphabetic’ citation scheme usually requires a letter to be appended to the
label if the bibliography contains two or more works by the same author which
were all published in the same year. In this case, the extraalpha field holds an
integer which may be converted to a letter with \mknumalph or formatted in some
other way. This field is similar to the role of extrayear in the author-year scheme.
A complete ‘alphabetic’ label consists of the fields labelalpha plus extraalpha.
Note that the labelalpha and extraalpha fields need to be requested with the
package option labelalpha, see § 3.1.2.3 for details. See also labelalpha as well
as \labelalphaothers in § 3.8.1.

labelname list (name)

The name to be printed in citations. This list is a copy of either the shortauthor,
the author, the shorteditor, the editor, or the translator list, which are nor-
mally checked for in this order. If no authors and editors are available, this list
is undefined. Note that this list is also responsive to the useauthor, useeditor,
and usetranslator options, see § 3.1.3. Citation styles should use this list when
printing the name in a citation. This list is provided for convenience only and does
not carry any additional meaning. With Biber, this field may be customized. See Biber only

§ 4.5.2 for details.

123

labelnumber field (literal)

The number of the bibliography entry, as required by numeric citation schemes.
If the shorthand field is defined, biblatex does not assign a number to the re-
spective entry. In this case labelnumber is the shorthand rather than a number.
Numeric styles must use the value of this field instead of a counter. Note that this
field needs to be requested with the package option labelnumber, see § 3.1.2.3 for
details. Also see the package option defernumbers in § 3.1.2.1.

prefixnumber field (literal)

If the prefixnumbers option of \printbibliography has been set in order to
prefix all entries in a subbibliography with a fixed string, this string is available
in the prefixnumber field of all aVected entries. If no prefix has been set, the
prefixnumber field of the respective entry is undefined. See the prefixnumbers
option of \printbibliography in § 3.5.2 for details. If the shorthand field is de-
fined, biblatex does not assign the prefix to the prefixnumber field of the respec-
tive entry. In this case, the prefixnumber field is undefined.

labeltitle field (literal)

The title to be printed in citations. If a short title is available, labeltitle is a copy
of the shorttitle field, otherwise biblatex falls back to the title field. Citation
styles printing short titles may simply make use of this field instead of checking
whether a shorttitle field is available every time they print a title. This field is
provided for convenience only and does not carry any additional meaning.

labelyear field (literal)

The publication year, as specified in the date or the year field, for use in author-
year labels. A complete author-year label consists of the fields labelyear plus
extrayear. Note that the labelyear and extrayear fields need to be requested
with the package option labelyear, see § 3.1.2.3 for details. See also extrayear.
With Biber, this field may be customized. See § 4.5.2 for details. Biber only

extrayear field (integer)

The author-year citation scheme usually requires a letter to be appended to the
year if the bibliography contains two or more works by the same author which
were all published in the same year. In this case, the extrayear field holds an
integer which may be converted to a letter with \mknumalph or formatted in some
other way. This field is undefined if there is only one work by the author in the bib-
liography or if all works by the author have diVerent publication years. A complete
author-year label consists of the fields labelyear plus extrayear. Note that the
labelyear and extrayear fields need to be requested with the package option
labelyear, see § 3.1.2.3 for details. See also labelyear.

124

4.2.4.3 Date Component Fields

See table 7 for an overview of how the date fields in bib files are related to the
date fields provided by the style interface. When testing for a field like origdate
in a style, use code like:

\iffieldundef{origyear}{...}{...}

This will tell you if the corresponding date is defined at all. This test:

\iffieldundef{origendyear}{...}{...}

will tell you if the corresponding date is defined and a (fully specified) range. This
test:

\iffieldequalstr{origendyear}{}{...}{...}

will tell you if the corresponding date is defined and an open-ended range. Open-
ended ranges are indicated by an empty endyear component (as opposed to an
undefined endyear component). See § 2.3.8 and table 2 on page 33 for further
examples.

day field (integer)

This field holds the day component of the date field. If the date is a range, it holds
the day component of the start date.

month field (integer)

This field is the month as given in the database file or it holds the month component
of the date field. If the date is a range, it holds the month component of the start
date.

year field (integer)

This field is the year as given in the database file or it holds the year component
of the date field. If the date is a range, it holds the year component of the start
date.

endday field (integer)

If the date specification in the date field is a range, this field holds the day compo-
nent of the end date.

endmonth field (integer)

If the date specification in the date field is a range, this field holds the month
component of the end date.

endyear field (integer)

If the date specification in the date field is a range, this field holds the year compo-
nent of the end date. A blank (but defined) endyear component indicates an open
ended date range.

125

bib File Data Interface

Field Value (Example) Field Value (Example)

date 1988 day undefined
month undefined
year 1988
endday undefined
endmonth undefined
endyear undefined

date 1997/ day undefined
month undefined
year 1997
endday undefined
endmonth undefined
endyear empty

urldate 2009-01-31 urlday 31
urlmonth 01
urlyear 2009
urlendday undefined
urlendmonth undefined
urlendyear undefined

origdate 2002-01/2002-02 origday undefined
origmonth 01
origyear 2002
origendday undefined
origendmonth 02
origendyear 2002

eventdate 1995-01-31/1995-02-05 eventday 31
eventmonth 01
eventyear 1995
eventendday 05
eventendmonth 02
eventendyear 1995

Table 7: Date Interface

origday field (integer)

This field holds the day component of the origdate field. If the date is a range, it
holds the day component of the start date.

origmonth field (integer)

This field holds the month component of the origdate field. If the date is a range,
it holds the month component of the start date.

origyear field (integer)

This field holds the year component of the origdate field. If the date is a range, it
holds the year component of the start date.

origendday field (integer)

If the date specification in the origdate field is a range, this field holds the day
component of the end date.

126

origendmonth field (integer)

If the date specification in the origdate field is a range, this field holds the month
component of the end date.

origendyear field (integer)

If the date specification in the origdate field is a range, this field holds the year
component of the end date. A blank (but defined) origendyear component indi-
cates an open ended origdate range.

eventday field (integer)

This field holds the day component of the eventdate field. If the date is a range,
it holds the day component of the start date.

eventmonth field (integer)

This field holds the month component of the eventdate field. If the date is a range,
it holds the month component of the start date.

eventyear field (integer)

This field holds the year component of the eventdate field. If the date is a range,
it holds the year component of the start date.

eventendday field (integer)

If the date specification in the eventdate field is a range, this field holds the day
component of the end date.

eventendmonth field (integer)

If the date specification in the eventdate field is a range, this field holds the month
component of the end date.

eventendyear field (integer)

If the date specification in the eventdate field is a range, this field holds the
year component of the end date. A blank (but defined) eventendyear component
indicates an open ended eventdate range.

urlday field (integer)

This field holds the day component of the urldate field.

urlmonth field (integer)

This field holds the month component of the urldate field.

urlyear field (integer)

This field holds the year component of the urldate field.

127

urlendday field (integer)

If the date specification in the urldate field is a range, this field holds the day
component of the end date.

urlendmonth field (integer)

If the date specification in the urldate field is a range, this field holds the month
component of the end date.

urlendyear field (integer)

If the date specification in the urldate field is a range, this field holds the year
component of the end date. A blank (but defined) urlendyear component indi-
cates an open ended urldate range.

4.3 Citation Styles

A citation style is a set of commands such as \cite which print diVerent types
of citations. Such styles are defined in files with the suYx cbx. The biblatex
package loads the selected citation style file at the end of the package. Note that
a small repertory of frequently used macros shared by several of the standard
citation styles is also included in biblatex.def. This file is loaded at the end
of the package as well, prior to the selected citation style. It also contains the
definitions of the commands from § 3.6.5.

4.3.1 Citation Style Files

Before we go over the individual commands available in citation style files, con-
sider this example of the overall structure of a typical cbx file:

\ProvidesFile{example.cbx}[2006/03/15 v1.0 biblatex citation style]

\DeclareCiteCommand{\cite}{...}{...}{...}{...}
\DeclareCiteCommand{\parencite}[\mkbibparens]{...}{...}{...}{...}
\DeclareCiteCommand{\footcite}[\mkbibfootnote]{...}{...}{...}{...}
\DeclareCiteCommand{\textcite}{...}{...}{...}{...}
\endinput

\RequireCitationStyle{〈style〉}

This command is optional and intended for specialized citation styles built on top
of a more generic style. It loads the citation style style.cbx.

\InitializeCitationStyle{〈code〉}

Specifies arbitrary 〈code〉 required to initialize or reset the citation style. This
hook will be executed once at package load-time and every time the \citereset
command from § 3.6.8 is used. The \citereset command also resets the in-
ternal citation trackers of this package. The reset will aVect the \ifciteseen,
\ifentryseen, \ifciteibid, and \ifciteidem tests discussed in § 4.6.2. When

128

used in a refsection environment, the reset of the citation tracker is local to the
current refsection environment.

\OnManualCitation{〈code〉}

Specifies arbitrary 〈code〉 required for a partial reset of the citation style. This hook
will be executed every time the \mancite command from § 3.6.8 is used. It is par-
ticularly useful in citation styles which replace repeated citations by abbreviations
like ‘ibidem’ or ‘op. cit.’ which may get ambiguous if automatically generated and
manual citations are mixed. The \mancite command also resets the internal ‘ibi-
dem’ and ‘idem’ trackers of this package. The reset will aVect the \ifciteibid
and \ifciteidem tests discussed in § 4.6.2.

\DeclareCiteCommand{〈command〉}[〈wrapper〉]{〈precode〉}{〈loopcode〉}{〈sepcode〉}{〈postcode〉}
\DeclareCiteCommand*{〈command〉}[〈wrapper〉]{〈precode〉}{〈loopcode〉}{〈sepcode〉}{〈postcode〉}

This is the core command used to define all citation commands. It takes one op-
tional and five mandatory arguments. The 〈command〉 is the command to be de-
fined, for example \cite. If the optional 〈wrapper〉 argument is given, the entire
citation will be passed to the 〈wrapper〉 as an argument, i. e., the wrapper com-
mand must take one mandatory argument.1 The 〈precode〉 is arbitrary code to be
executed at the beginning of the citation. It will typically handle the 〈prenote〉 ar-
gument which is available in the prenote field. It may also be used to initialize
macros required by the 〈loopcode〉. The 〈loopcode〉 is arbitrary code to be executed
for each entry key passed to the 〈command〉. This is the core code which prints
the citation labels or any other data. The 〈sepcode〉 is arbitrary code to be exe-
cuted after each iteration of the 〈loopcode〉. It will only be executed if a list of
entry keys is passed to the 〈command〉. The 〈sepcode〉 will usually insert some
kind of separator, such as a comma or a semicolon. The 〈postcode〉 is arbitrary
code to be executed at the end of the citation. The 〈postcode〉 will typically han-
dle the 〈postnote〉 argument which is available in the postnote field.2 The star-
red variant of \DeclareCiteCommand defines a starred 〈command〉. For example,
\DeclareCiteCommand*{cite} would define \cite*.3

\DeclareMultiCiteCommand{〈command〉}[〈wrapper〉]{〈cite〉}{〈delimiter〉}

This command defines ‘multicite’ commands (§ 3.6.3). The 〈command〉 is the mul-
ticite command to be defined, for example \cites. It is automatically made ro-
bust. Multicite commands are built on top of backend commands defined with
\DeclareCiteCommand and the 〈cite〉 argument specifies the name of the backend

1 Typical examples of wrapper commands are \mkbibparens and \mkbibfootnote.
2 The bibliographic data available to the 〈loopcode〉 is the data of the entry currently being pro-

cessed. In addition to that, the data of the first entry is available to the 〈precode〉 and the data of
the last one is available to the 〈postcode〉. ‘First’ and ‘last’ refer to the order in which the citations
are printed. If the sortcites package option is active, this is the order of the list after sorting.
Note that no bibliographic data is available to the 〈sepcode〉.

3 Note that the regular variant of \DeclareCiteCommand defines a starred version of the 〈command〉
implicitly, unless the starred version has been defined before. This is intended as a fallback. The
implicit definition is an alias for the regular variant.

129

command to be used. Note that the wrapper of the backend command (i. e., the
〈wrapper〉 argument passed to \DeclareCiteCommand) is ignored. Use the optional
〈wrapper〉 argument to specify an alternative wrapper. The 〈delimiter〉 is the string
to be printed as a separator between the individual citations in the list. This will
typically be \multicitedelim. The following examples are real definitions taken
from biblatex.def:

\DeclareMultiCiteCommand{\cites}%
{\cite}{\multicitedelim}

\DeclareMultiCiteCommand{\parencites}[\mkbibparens]%
{\parencite}{\multicitedelim}

\DeclareMultiCiteCommand{\footcites}[\mkbibfootnote]%
{\footcite}{\multicitedelim}

\DeclareAutoCiteCommand{〈name〉}[〈position〉]{〈cite〉}{〈multicite〉}

This command provides definitions for the \autocite and \autocites commands
from § 3.6.4. The definitions are enabled with the autocite package option from
§ 3.1.2.1. The 〈name〉 is an identifier which serves as the value passed to the
package option. The autocite commands are built on top of backend commands
like \parencite and \parencites. The arguments 〈cite〉 and 〈multicite〉 spec-
ify the backend commands to use. The 〈cite〉 argument refers to \autocite and
〈multicite〉 refers to \autocites. The 〈position〉 argument controls the handling
of any punctuation marks after the citation. Possible values are l, r, f. r means
that the punctuation is placed to the right of the citation, i. e., it will not be moved
around. l means that any punctuation after the citation is moved to the left of
the citation. f is like r in a footnote and like l otherwise. This argument is op-
tional and defaults to r. See also \DeclareAutoPunctuation in § 4.7.5 and the
autopunct package option in § 3.1.2.1. The following examples are real definitions
taken from biblatex.def:

\DeclareAutoCiteCommand{plain}{\cite}{\cites}
\DeclareAutoCiteCommand{inline}{\parencite}{\parencites}
\DeclareAutoCiteCommand{footnote}[l]{\footcite}{\footcites}
\DeclareAutoCiteCommand{footnote}[f]{\smartcite}{\smartcites}

4.3.2 Special Fields

The following fields are used by biblatex to pass data to citation commands. They
are not used in bib files but defined automatically by the package. From the per-
spective of a citation style, they are not diVerent from the fields in a bib file. See
also § 4.2.4.

prenote field (literal)

The 〈prenote〉 argument passed to a citation command. This field is specific to
citations and not available in the bibliography. If the 〈prenote〉 argument is missing
or empty, this field is undefined.

130

postnote field (literal)

The 〈postnote〉 argument passed to a citation command. This field is specific to ci-
tations and not available in the bibliography. If the 〈postnote〉 argument is missing
or empty, this field is undefined.

4.4 Data Interface

The data interface are the facilities used to format and print all bibliographic data.
These facilities are available in both bibliography and citation styles.

4.4.1 Data Commands

This section introduces the main data interface of the biblatex package. These are
the commands doing most of the work, i. e., they actually print the data provided
in lists and fields.

\printfield[〈format〉]{〈field〉}

This command prints a 〈field〉 using the formatting directive 〈format〉, as defined
with \DeclareFieldFormat. If a type-specific 〈format〉 has been declared, the type-
specific formatting directive takes precedence over the generic one. If the 〈field〉 is
undefined, nothing is printed. If the 〈format〉 is omitted, \printfield tries using
the name of the field as a format name. For example, if the title field is to be
printed and the 〈format〉 is not specified, it will try to use the field format title.1

In this case, any type-specific formatting directive will also take precedence over
the generic one. If all of these formats are undefined, it falls back to default as a
last resort. Note that \printfield provides the name of the field currently being
processed in \currentfield for use in field formatting directives.

\printlist[〈format〉][〈start〉–〈stop〉]{〈literal list〉}

This command loops over all items in a 〈literal list〉, starting at item number 〈start〉
and stopping at item number 〈stop〉, including 〈start〉 and 〈stop〉 (all lists are num-
bered starting at 1). Each item is printed using the formatting directive 〈format〉, as
defined with \DeclareListFormat. If a type-specific 〈format〉 has been declared,
the type-specific formatting directive takes precedence over the generic one. If the
〈literal list〉 is undefined, nothing is printed. If the 〈format〉 is omitted, \printlist
tries using the name of the list as a format name. In this case, any type-specific
formatting directive will also take precedence over the generic one. If all of these
formats are undefined, it falls back to default as a last resort. The 〈start〉 argu-
ment defaults to 1; 〈stop〉 defaults to the total number of items in the list. If the to-
tal number is greater than 〈maxitems〉, 〈stop〉 defaults to 〈minitems〉 (see § 3.1.2.1).
See \printnames for further details. Note that \printlist provides the name of
the literal list currently being processed in \currentlist for use in list formatting
directives.

1 In other words, \printfield{title} is equivalent to \printfield[title]{title}.

131

\printnames[〈format〉][〈start〉–〈stop〉]{〈name list〉}

This command loops over all items in a 〈name list〉, starting at item number 〈start〉
and stopping at item number 〈stop〉, including 〈start〉 and 〈stop〉 (all lists are num-
bered starting at 1). Each item is printed using the formatting directive 〈format〉,
as defined with \DeclareNameFormat. If a type-specific 〈format〉 has been de-
clared, the type-specific formatting directive takes precedence over the generic
one. If the 〈name list〉 is undefined, nothing is printed. If the 〈format〉 is omitted,
\printnames tries using the name of the list as a format name. In this case, any
type-specific formatting directive will also take precedence over the generic one.
If all of these formats are undefined, it falls back to default as a last resort. The
〈start〉 argument defaults to 1; 〈stop〉 defaults to the total number of items in the
list. If the total number is greater than 〈maxnames〉, 〈stop〉 defaults to 〈minnames〉
(see § 3.1.2.1). If you want to select a range but use the default list format, the first
optional argument must still be given, but is left empty:

\printnames[][1-3]{...}

One of 〈start〉 and 〈stop〉 may be omitted, hence the following arguments are all
valid:

\printnames[...][-1]{...}
\printnames[...][2-]{...}
\printnames[...][1-3]{...}

If you want to override 〈maxnames〉 and 〈minnames〉 and force printing of the en-
tire list, you may refer to the listtotal counter in the second optional argument:

\printnames[...][-\value{listtotal}]{...}

Whenever \printnames and \printlist process a list, information concerning
the current state is accessible by way of four counters: the listtotal counter
holds the total number of items in the current list, listcount holds the number of
the item currently being processed, liststart is the 〈start〉 argument passed to
\printnames or \printlist, liststop is the 〈stop〉 argument. These counters are
intended for use in list formatting directives. listtotal may also be used in the
second optional argument to \printnames and \printlist. Note that these coun-
ters are local to list formatting directives and do not hold meaningful values when
used anywhere else. For every list, there is also a counter by the same name which
holds the total number of items in the corresponding list. For example, the author
counter holds the total number of items in the author list. These counters are
similar to listtotal except that they may also be used independently of list for-
matting directives. There are also maxnames and minnames as well as maxitems and
minitems counters which hold the values of the corresponding package options.
See § 4.10.5 for a complete list of such internal counters. Note that \printnames
provides the name of the name list currently being processed in \currentname for
use in name formatting directives.

\printtext[〈format〉]{〈text〉}

This command prints 〈text〉, which may be printable text or arbitrary code gen-

132

erating printable text. It clears the punctuation buVer before inserting 〈text〉 and
informs biblatex that printable text has been inserted. This ensures that all pre-
ceding and following \newblock and \newunit commands have the desired ef-
fect. \printfield and \printnames as well as \bibstring and its companion
commands (see § 4.8) do that automatically. Using this command is required if
a bibliography styles inserts literal text (including the commands from §§ 4.7.3
and 4.7.4) to ensure that block and unit punctuation works as advertised in § 4.7.1.
The optional 〈format〉 argument specifies a field formatting directive to be used
to format 〈text〉. This may also be useful when several fields are to be printed as
one chunk, for example, by enclosing the entire chunk in parentheses or quotation
marks. If a type-specific 〈format〉 has been declared, the type-specific formatting
directive takes precedence over the generic one. If the 〈format〉 is omitted, the
〈text〉 is printed as is. See also § 4.11.7 for some practical hints.

\printfile[〈format〉]{〈file〉}

This command is similar to \printtext except that the second argument is a file
name rather than literal text. The 〈file〉 argument must be the name of a valid
LaTeX file found in TeX’s search path. \printfile will use \input to load this
〈file〉. If there is no such file, \printfile does nothing. The optional 〈format〉
argument specifies a field formatting directive to be applied to the 〈file〉. If a type-
specific 〈format〉 has been declared, the type-specific formatting directive takes
precedence over the generic one. If the 〈format〉 is omitted, the 〈file〉 is printed
as is. Note that this feature needs to be enabled explicitly by setting the package
option loadfiles from § 3.1.2.1. By default, \printfile will not input any files.

\printdate This command prints the date of the entry, as specified in the fields date or month/
year. The format is controlled by the package option date from § 3.1.2.1. Note that
this command interfaces with the punctuation tracker. There is no need to wrap it
in a \printtext command.

\printdateextra Similar to \printdate but incorporates the extrayear field in the date specifica-
tion. This is useful for bibliography styles designed for author-year citations.

\printurldate This command prints the urldate of the entry. The format is controlled by the
package option urldate from § 3.1.2.1. Note that this command interfaces with
the punctuation tracker. There is no need to wrap it in a \printtext command.

\printorigdate This command prints the origdate of the entry. The format is controlled by the
package option origdate from § 3.1.2.1. Note that this command interfaces with
the punctuation tracker. There is no need to wrap it in a \printtext command.

\printeventdate This command prints the eventdate of the entry. The format is controlled by the
package option eventdate from § 3.1.2.1. Note that this command interfaces with
the punctuation tracker. There is no need to wrap it in a \printtext command.

\indexfield[〈format〉]{〈field〉}

This command is similar to \printfield except that the 〈field〉 is not printed
but added to the index using the formatting directive 〈format〉, as defined with

133

\DeclareIndexFieldFormat. If a type-specific 〈format〉 has been declared, it takes
precedence over the generic one. If the 〈field〉 is undefined, this command does
nothing. If the 〈format〉 is omitted, \indexfield tries using the name of the field
as a format name. In this case, any type-specific formatting directive will also take
precedence over the generic one. If all of these formats are undefined, it falls back
to default as a last resort.

\indexlist[〈format〉][〈start〉–〈stop〉]{〈literal list〉}

This command is similar to \printlist except that the items in the list are not
printed but added to the index using the formatting directive 〈format〉, as defined
with \DeclareIndexListFormat. If a type-specific 〈format〉 has been declared, the
type-specific formatting directive takes precedence over the generic one. If the
〈literal list〉 is undefined, this command does nothing. If the 〈format〉 is omitted,
\indexlist tries using the name of the list as a format name. In this case, any
type-specific formatting directive will also take precedence over the generic one. If
all of these formats are undefined, it falls back to default as a last resort.

\indexnames[〈format〉][〈start〉–〈stop〉]{〈name list〉}

This command is similar to \printnames except that the items in the list are not
printed but added to the index using the formatting directive 〈format〉, as defined
with \DeclareIndexNameFormat. If a type-specific 〈format〉 has been declared, the
type-specific formatting directive takes precedence over the generic one. If the
〈name list〉 is undefined, this command does nothing. If the 〈format〉 is omitted,
\indexnames tries using the name of the list as a format name. In this case, any
type-specific formatting directive will also take precedence over the generic one. If
all of these formats are undefined, it falls back to default as a last resort.

\entrydata{〈key〉}{〈code〉}
\entrydata*{〈key〉}{〈code〉}

Data commands like \printfield normally use the data of the entry currently
being processed. You may use \entrydata to switch contexts locally. The 〈key〉 is
the entry key of the entry to use locally. The 〈code〉 is arbitrary code to be executed
in this context. This code will be executed in a group. See § 4.11.6 for an example.
Note that this command will automatically switch languages if the babel package
option is enabled. The starred version \entrydata* will clone all fields of the
enclosing entry, using field, counter, and other resource names prefixed with the
string ‘saved’. This is useful when comparing two data sets. For example, inside the
〈code〉 argument, the author field holds the author of entry 〈key〉 and the author
of the enclosing entry is available as savedauthor. The author counter holds the
number of names in the author field of 〈key〉; the savedauthor counter refers to
the author count of the enclosing entry.

\entryset{〈precode〉}{〈postcode〉}

This command is intended for use in bibliography drivers handling @set entries.
It will loop over all members of the set, as indicated by the entryset field, and
execute the appropriate driver for the respective set member. This is similar to exe-

134

cuting the \usedriver command from § 4.6.4 for each set member. The 〈precode〉
is arbitrary code to be executed prior to processing each item in the set. The
〈postcode〉 is arbitrary code to be executed immediately after processing each item.
Both arguments are mandatory in terms of the syntax but may be left empty. See
§ 4.11.1 for usage examples.

4.4.2 Formatting Directives

This section introduces the commands used to define the formatting directives
required by the data commands from § 4.4.1. Note that all standard formats are
defined in biblatex.def.

\DeclareFieldFormat[〈entrytype, . . . 〉]{〈format〉}{〈code〉}
\DeclareFieldFormat*{〈format〉}{〈code〉}

Defines the field format 〈format〉. This formatting directive is arbitrary 〈code〉 to
be executed by \printfield. The value of the field will be passed to the 〈code〉
as its first and only argument. The name of the field currently being processed is
available to the 〈code〉 as \currentfield. If an 〈entrytype〉 is specified, the format
is specific to that type. The 〈entrytype〉 argument may be a comma-separated list
of values. The starred variant of this command is similar to the regular version,
except that all type-specific formats are cleared.

\DeclareListFormat[〈entrytype, . . . 〉]{〈format〉}{〈code〉}
\DeclareListFormat*{〈format〉}{〈code〉}

Defines the literal list format 〈format〉. This formatting directive is arbitrary 〈code〉
to be executed for every item in a list processed by \printlist. The current item
will be passed to the 〈code〉 as its first and only argument. The name of the lit-
eral list currently being processed is available to the 〈code〉 as \currentlist. If
an 〈entrytype〉 is specified, the format is specific to that type. The 〈entrytype〉 argu-
ment may be a comma-separated list of values. Note that the formatting directive
also handles the punctuation to be inserted between the individual items in the list.
You need to check whether you are in the middle of or at the end of the list, i. e.,
whether listcount is smaller than or equal to liststop. The starred variant of
this command is similar to the regular version, except that all type-specific formats
are cleared.

\DeclareNameFormat[〈entrytype, . . . 〉]{〈format〉}{〈code〉}
\DeclareNameFormat*{〈format〉}{〈code〉}

Defines the name list format 〈format〉. This formatting directive is arbitrary 〈code〉
to be executed for every name in a list processed by \printnames. If an 〈entrytype〉
is specified, the format is specific to that type. The 〈entrytype〉 argument may be a
comma-separated list of values. The individual parts of a name will be passed to
the 〈code〉 as separate arguments. These arguments are as follows:

#1 The last names. If a name consists of a single part only (for example, ‘Aristo-
tle’), this part will be treated as the last name.

#2 The last names, given as initials.

135

#3 The first names. This argument also includes all middle names.
#4 The first names, given as initials.
#5 The name prefixes, for example von, van, of, da, de, del, della, etc. Note that

name prefixes are referred to as the ‘von part’ of the name in the BibTeX
documentation.

#6 The name prefixes, given as initials.
#7 The name aYxes, for example ‘junior’, ‘senior’, ‘der Jüngere’, ‘der Ältere’, etc.

Note that name aYxes are referred to as the ‘junior part’ of the name in the
BibTeX documentation.

#8 The name aYxes, given as initials.

If a certain part of a name is not available, the corresponding argument will be
empty, hence you may use \ifblank tests to check for the inidividual parts of
a name. The name of the name list currently being processed is available to the
〈code〉 as \currentname. Note that the formatting directive also handles the punc-
tuation to be inserted between separate names and between the individual parts
of a name. You need to check whether you are in the middle of or at the end of the
list, i. e., whether listcount is smaller than or equal to liststop. See also § 3.11.4.
The starred variant of this command is similar to the regular version, except that
all type-specific formats are cleared.

\DeclareIndexFieldFormat[〈entrytype, . . . 〉]{〈format〉}{〈code〉}
\DeclareIndexFieldFormat*{〈format〉}{〈code〉}

Defines the field format 〈format〉. This formatting directive is arbitrary 〈code〉 to
be executed by \indexfield. The value of the field will be passed to the 〈code〉
as its first and only argument. The name of the field currently being processed is
available to the 〈code〉 as \currentfield. If an 〈entrytype〉 is specified, the format
is specific to that type. The 〈entrytype〉 argument may be a comma-separated list
of values. This command is similar to \DeclareFieldFormat except that the data
handled by the 〈code〉 is not intended to be printed but written to the index. Note
that \indexfield will execute the 〈code〉 as is, i. e., the 〈code〉 must include \index
or a similar command. The starred variant of this command is similar to the regular
version, except that all type-specific formats are cleared.

\DeclareIndexListFormat[〈entrytype, . . . 〉]{〈format〉}{〈code〉}
\DeclareIndexListFormat*{〈format〉}{〈code〉}

Defines the literal list format 〈format〉. This formatting directive is arbitrary 〈code〉
to be executed for every item in a list processed by \indexlist. The current item
will be passed to the 〈code〉 as its only argument. The name of the literal list cur-
rently being processed is available to the 〈code〉 as \currentlist. If an 〈entrytype〉
is specified, the format is specific to that type. The 〈entrytype〉 argument may be a
comma-separated list of values. This command is similar to \DeclareListFormat
except that the data handled by the 〈code〉 is not intended to be printed but written
to the index. Note that \indexlist will execute the 〈code〉 as is, i. e., the 〈code〉
must include \index or a similar command. The starred variant of this command
is similar to the regular version, except that all type-specific formats are cleared.

136

\DeclareIndexNameFormat[〈entrytype, . . . 〉]{〈format〉}{〈code〉}
\DeclareIndexNameFormat*{〈format〉}{〈code〉}

Defines the name list format 〈format〉. This formatting directive is arbitrary 〈code〉
to be executed for every name in a list processed by \indexnames. The name of
the name list currently being processed is available to the 〈code〉 as \currentname.
If an 〈entrytype〉 is specified, the format is specific to that type. The 〈entrytype〉
argument may be a comma-separated list of values. The parts of the name will
be passed to the 〈code〉 as separate arguments. This command is very similar to
\DeclareNameFormat except that the data handled by the 〈code〉 is not intended to
be printed but written to the index. Note that \indexnames will execute the 〈code〉
as is, i. e., the 〈code〉 must include \index or a similar command. The starred
variant of this command is similar to the regular version, except that all type-
specific formats are cleared.

\DeclareFieldAlias[〈entry type〉]{〈alias〉}[〈format entry type〉]{〈format〉}

Declares 〈alias〉 to be an alias for the field format 〈format〉. If an 〈entrytype〉 is
specified, the alias is specific to that type. The 〈format entry type〉 is the entry type
of the backend format. This is only required when declaring an alias for a type-
specific formatting directive.

\DeclareListAlias[〈entry type〉]{〈alias〉}[〈format entry type〉]{〈format〉}

Declares 〈alias〉 to be an alias for the literal list format 〈format〉. If an 〈entrytype〉
is specified, the alias is specific to that type. The 〈format entry type〉 is the entry
type of the backend format. This is only required when declaring an alias for a
type-specific formatting directive.

\DeclareNameAlias[〈entry type〉]{〈alias〉}[〈format entry type〉]{〈format〉}

Declares 〈alias〉 to be an alias for the name list format 〈format〉. If an 〈entrytype〉 is
specified, the alias is specific to that type. The 〈format entry type〉 is the entry type
of the backend format. This is only required when declaring an alias for a type-
specific formatting directive.

\DeclareIndexFieldAlias[〈entry type〉]{〈alias〉}[〈format entry type〉]{〈format〉}

Declares 〈alias〉 to be an alias for the field format 〈format〉. If an 〈entrytype〉 is
specified, the alias is specific to that type. The 〈format entry type〉 is the entry type
of the backend format. This is only required when declaring an alias for a type-
specific formatting directive.

\DeclareIndexListAlias[〈entry type〉]{〈alias〉}[〈format entry type〉]{〈format〉}

Declares 〈alias〉 to be an alias for the literal list format 〈format〉. If an 〈entrytype〉
is specified, the alias is specific to that type. The 〈format entry type〉 is the entry
type of the backend format. This is only required when declaring an alias for a
type-specific formatting directive.

137

\DeclareIndexNameAlias[〈entry type〉]{〈alias〉}[〈format entry type〉]{〈format〉}

Declares 〈alias〉 to be an alias for the name list format 〈format〉. If an 〈entrytype〉 is
specified, the alias is specific to that type. The 〈format entry type〉 is the entry type
of the backend format. This is only required when declaring an alias for a type-
specific formatting directive.

4.5 Customization

4.5.1 Sorting

In addition to the predefined sorting schemes discussed in § 3.4, it is possible to
define new ones or modify the default definitions. The sorting process may be
customized further by excluding certain fields from sorting on a per-type basis
and by automatically populating the presort field on a per-type basis. Note that
custom sorting schemes require Biber. They will not work with any other backend.

\DeclareSortingScheme{〈name〉}{〈specification〉} Biber only

Defines the sorting scheme 〈name〉. The 〈name〉 is the identifier passed to the
sorting option (§ 3.1.2.1) when selecting the sorting scheme. The 〈specification〉 is
an undelimited list of \sort directives which specify the elements to be considered
in the sorting process. Spaces, tabs, and line endings may be used freely to visually
arrange the 〈specification〉. Blank lines are not permissible. This command may
only be used in the preamble.

\sort{〈elements〉}

Specifies the elements considered in the sorting process. The 〈elements〉 are an
undelimited list of \name, \list, \field, \literal, and \citeorder commands
which are evalutated in the order in which they are given. If an element is defined,
it is added to the sort key and the sorting routine skips to the next \sort directive.
If it is undefined, the next element is evaluated. Since literal strings are always
defined, any \literal commands should be the sole or the last element in a \sort
directive. The \sort command supports the following optional arguments:

direction=ascending, descending default: ascending

The sort direction, which may be either ascending or descending. The default is
ascending order.

final=true, false default: false

This option marks a \sort directive as the final one in the 〈specification〉. If one
of the 〈elements〉 is available, the remainder of the 〈specification〉 will be ignored.
The short form final is equivalent to final=true.

sortcase=true, false

Whether or not to sort case-sensitively. The default setting depends on the global
sortcase option.

138

sortupper=true, false

Whether or not to sort in ‘uppercase before lowercase’ (true) or ‘lowercase before
uppercase’ order (false). The default setting depends on the global sortupper
option.

\name{〈name list〉}

The \name element adds a 〈name list〉 to the sorting specification. If the 〈name list〉
is undefined, the element is skipped.

\list{〈literal list〉}

The \list element adds a 〈literal list〉 to the sorting specification. If the 〈literal list〉
is undefined, the element is skipped.

\field[〈key=value, . . . 〉]{〈field〉}

The \field element adds a 〈field〉 to the sorting specification. If the 〈field〉 is un-
defined, the element is skipped. The \field command supports the following op-
tional arguments:

padside=left, right default: left

Pads a field on the left or right side using padchar so that its width is padwidth.
If no padding option is set, no padding is done at all. If any padding option is
specified, then padding is performed and the missing options are assigned built-in
default values. If padding and substring matching are both specified, the substring
match is performed first. Padding is particularly useful with numeric fields. For
example, the command

\field[padside=left,padwidth=2,padchar=0]{volume}

will pad the volume field with leading zeros to a width of two characters. This way,
volumes are sorted by numeric value (01/02/11/12) rather than in alphabetic
order (1/11/12/2).

padwidth=〈integer〉 default: 4

The target width in characters.

padchar=〈character〉 default: 0

The character to be used when padding the field.

strside=left, right default: left

Performs a substring match on the left or right side of the field. The number
of characters to match is specified by the corresponding strwidth option. If no
substring option is set, no substring matching is performed at all. If any substring
option is specified, then substring matching is performed and the missing options
are assigned built-in default values. If padding and substring matching are both
specified, the substring match is performed first.

139

strwidth=〈integer〉 default: 4

The number of characters to match.

\literal{〈string〉}

The \literal element adds a literal 〈string〉 to the sorting specification. This is
useful as a fallback if some fields are not available.

\citeorder The \citeorder element has a special meaning. It indicates that the entries should
be kept in the order in which they were cited. It is usually the only element in the
〈specification〉:

\DeclareSortingScheme{none}{
\sort{\citeorder}

}

Here are some examples. In the first example, we define a simple name/title/
year scheme. The name element may be either the author, the editor, or the
translator. Given this specification, the sorting routine will use the first element
which is available and continue with the title. Note that the options useauthor,
useeditor, and usetranslator are considered automatically in the sorting pro-
cess:

\DeclareSortingScheme{sample}{
\sort{

\name{author}
\name{editor}
\name{translator}

}
\sort{

\field{title}
}
\sort{

\field{year}
}

}

In the next example, we define the same scheme in a more elaborate way, consid-
ering special fields such as presort, sortkey, sortname, etc. Since the sortkey
field specifies the master sort key, it needs to override all other elements except for
presort. This is indicated by the final option. If the sortkey field is available,
processing will stop at this point. If not, the sorting routine continues with the
next \sort directive. This setup corresponds to the default definition of the nty
scheme:

\DeclareSortingScheme{nty}{
\sort{

\field{presort}
}
\sort[final]{

\field{sortkey}

140

}
\sort{

\name{sortname}
\name{author}
\name{editor}
\name{translator}
\field{sorttitle}
\field{title}

}
\sort{

\field{sorttitle}
\field{title}

}
\sort{

\field{sortyear}
\field{year}

}
}

\DeclareSortExclusion{〈entrytype, . . . 〉}{〈field, . . . 〉} Biber only

Specifies fields to be excluded from sorting on a per-type basis. The 〈entrytype〉
argument and the 〈field〉 argument may be a comma-separated list of values. A
blank 〈field〉 argument will clear all exclusions for this 〈entrytype〉. This command
may only be used in the preamble.

\DeclarePresort[〈entrytype, . . . 〉]{〈string〉} Biber only

Specifies are string to be used to automatically populate the presort field of en-
tries without a presort field. The presort may be defined globally or on a per-
type basis. If the optional 〈entrytype〉 argument is given, the 〈string〉 applies to the
respective entry type. If not, it serves as the global default value. Specifying an
〈entrytype〉 in conjunction with a blank 〈string〉 will clear the type-specific setting.
The 〈entrytype〉 argument may be a comma-separated list of values. This command
may only be used in the preamble.

4.5.2 Special Fields

Some of the automatically generated fields from § 4.2.4.2 may be customized. Note
that this requires Biber.

\DeclareLabelname[〈entrytype, . . . 〉]{〈specification〉} Biber only

Defines the fields to consider when generating the labelname field (see § 4.2.4.2).
The 〈specification〉 is a comma-separated list of fields. The fields are checked in the
order listed and the first field which is available will be used as labelname. This is
the default definition:

\DeclareLabelname{shortauthor,author,shorteditor,editor,translator}

The labelname field may be customized globally or on a per-type basis. If the
optional 〈entrytype〉 argument is given, the specification applies to the respective

141

entry type. If not, it is applied globally. The 〈entrytype〉 argument may be a comma-
separated list of values. This command may only be used in the preamble.

\DeclareLabelyear[〈entrytype, . . . 〉]{〈specification〉} Biber only

Defines the date components to consider when generating the labelyear field
(see § 4.2.4.2). The 〈specification〉 is a comma-separated list of date components.
The items are checked in the order listed and the first item which is available will
be used as labelyear. Note that the items are date components, not date fields.
This is the default definition:

\DeclareLabelyear{year,eventyear,origyear,urlyear}

The labelyear field may be customized globally or on a per-type basis. If the
optional 〈entrytype〉 argument is given, the specification applies to the respective
entry type. If not, it is applied globally. The 〈entrytype〉 argument may be a comma-
separated list of values. This command may only be used in the preamble. See also
§ 4.2.4.3.

4.5.3 Data Inheritance (crossref)

Biber features a highly customizable cross-referencing mechanism with flexible
data inheritance rules. This sections deals with the configuration interface. See
appendix a for the default configuration. Note that customized data inheritance
requires Biber. It will not work with any other backend. A note on terminology:
the child or target is the entry with the crossref field, the parent or source is the
entry the crossref field points to. The child inherits data from the parent.

\DefaultInheritance[〈exceptions〉]{〈options〉} Biber only

Configures the default inheritance behavior. This command may only be used in
the preamble. The default behavior may be customized be setting the following
〈options〉:

all=true, false default: true

Whether or not to inherit all fields from the parent by default. all=true means
that the child entry inherits all fields from the parent, unless a more specific in-
heritance rule has been set up with \DeclareDataInheritance. If an inheritance
rule is defined for a field, data inheritance is controlled by that rule. all=false
means that no data is inherited from the parent by default. Each field to be inher-
ited requires an explicit inheritance rule set up with \DeclareDataInheritance.
The package default is all=true.

override=true, false default: false

Whether or not to overwrite target fields with source fields if both are defined.
This applies both to automatic inheritance and to explicit inheritance rules. The
package default is override=false, i. e., existing fields of the child entry are not
overwritten.

The optional 〈exceptions〉 are an undelimited list of \except directives. Spaces,

142

tabs, and line endings may be used freely to visually arrange the 〈exceptions〉. Blank
lines are not permissible.

\except{〈source〉}{〈target〉}{〈options〉}

Sets the 〈options〉 for a specific 〈source〉 and 〈target〉 combination. The 〈source〉
and 〈target〉 arguments specify the parent and the child entry type. The asterisk
matches all types and is permissible in either argument.

\DeclareDataInheritance{〈source, . . . 〉}{〈target, . . . 〉}{〈rules〉} Biber only

Declares inheritance rules. The 〈source〉 and 〈target〉 arguments specify the parent
and the child entry type. Either argument may be a single entry type, a comma-
separated list of types, or an asterisk. The asterisk matches all entry types. The
〈rules〉 are an undelimited list of \inherit and/or \noinherit directives. Spaces,
tabs, and line endings may be used freely to visually arrange the 〈rules〉. Blank
lines are not permissible. This command may only be used in the preamble.

\inherit[〈option〉]{〈source〉}{〈target〉}

Defines an inheritance rule by mapping a 〈source〉 field to a 〈target〉 field. The
〈option〉 is the override option explained above. When set locally, it takes prece-
dence over any global options set with \DefaultInheritance.

\noinherit{〈source〉}

Unconditionally prevents inheritance of the 〈source〉 field.

\ResetDataInheritance Clears all inheritance rules defined with \DeclareDataInheritance. This com- Biber only

mand may only be used in the preamble.

Here are some practical examples:

\DefaultInheritance{all=true,override=false}

This example shows how to configure the default inheritance behavior. The above
settings are the package defaults.

\DefaultInheritance[
\except{*}{online}{all=false}

]{all=true,override=false}

This example is similar to the one above but adds one exception: entries of type
@online will, by default, not inherit any data from any parent.

\DeclareDataInheritance{collection}{incollection}{
\inherit{title}{booktitle}
\inherit{subtitle}{booksubtitle}
\inherit{titleaddon}{booktitleaddon}

}

So far we have looked at setting up the defaults. For example, all=true means
that the publisher field of a source entry is copied to the publisher field of the
target entry. In some cases, however, asymmetric mappings are required. They are
defined with \DeclareDataInheritance. The above example sets up three typical

143

rules for @incollection entries referencing a @collection. We map the title
and related fields of the source to the corresponding booktitle fields of the target.

\DeclareDataInheritance{mvbook,book}{inbook,bookinbook}{
\inherit{author}{author}
\inherit{author}{bookauthor}

}

This rule is an example of one-to-many mapping: it maps the author field of the
source to both the author and the bookauthor fields of the target in order to allow
for compact inbook/bookinbook entries. The source may be either a @mvbook or
a @book entry, the target either an @inbook or a @bookinbook entry.

\DeclareDataInheritance{*}{inbook,incollection}{
\noinherit{introduction}

}

This rule prevents inheritance of the introduction field. It applies to all targets
of type @inbook or @incollection, regardless of the source entry type.

\DeclareDataInheritance{*}{*}{
\noinherit{abstract}

}

This rule, which applies to all entries, regardless of the source and target entry
types, prevents inheritance of the abstract field.

\DefaultInheritance{all=true,override=false}
\ResetDataInheritance

This example demonstrates how to emulate BibTeX’s cross-referencing mechanism.
It enables inheritance by default, disables overwriting, and clears all other inheri-
tance rules and mappings.

4.6 Auxiliary Commands

The facilities in this section are intended for analyzing and saving bibliographic
data rather than formatting and printing it.

4.6.1 Data Commands

The commands in this section grant low-level access to the unformatted biblio-
graphic data. They are not intended for typesetting but rather for things like saving
data to a temporary macro so that it may be used in a comparison later.

\thefield{〈field〉}

Expands to the unformatted 〈field〉. If the 〈field〉 is undefined, this command ex-
pands to an empty string.

\strfield{〈field〉}

Similar to \thefield, except that the field is automatically sanitized such that its
value may safely be used in the formation of a control sequence name.

144

\thelist{〈literal list〉}

Expands to the unformatted 〈literal list〉. If the list is undefined, this command
expands to an empty string. Note that this command will dump the 〈literal list〉 in
the internal format used by this package. This format is not suitable for printing.

\thename{〈name list〉}

Expands to the unformatted 〈name list〉. If the list is undefined, this command
expands to an empty string. Note that this command will dump the 〈name list〉 in
the internal format used by this package. This format is not suitable for printing.

\savefield{〈field〉}{〈macro〉}
\savefield*{〈field〉}{〈macro〉}

Copies an unformatted 〈field〉 to a 〈macro〉. The regular variant of this command
defines the 〈macro〉 globally, the starred one works locally.

\savelist{〈literal list〉}{〈macro〉}
\savelist*{〈literal list〉}{〈macro〉}

Copies an unformatted 〈literal list〉 to a 〈macro〉. The regular variant of this com-
mand defines the 〈macro〉 globally, the starred one works locally.

\savename{〈name list〉}{〈macro〉}
\savename*{〈name list〉}{〈macro〉}

Copies an unformatted 〈name list〉 to a 〈macro〉. The regular variant of this com-
mand defines the 〈macro〉 globally, the starred one works locally.

\savefieldcs{〈field〉}{〈csname〉}
\savefieldcs*{〈field〉}{〈csname〉}

Similar to \savefield, but takes the control sequence name 〈csname〉 (without a
leading backslash) as an argument, rather than a macro name.

\savelistcs{〈literal list〉}{〈csname〉}
\savelistcs*{〈literal list〉}{〈csname〉}

Similar to \savelist, but takes the control sequence name 〈csname〉 (without a
leading backslash) as an argument, rather than a macro name.

\savenamecs{〈name list〉}{〈csname〉}
\savenamecs*{〈name list〉}{〈csname〉}

Similar to \savename, but takes the control sequence name 〈csname〉 (without a
leading backslash) as an argument, rather than a macro name.

\restorefield{〈field〉}{〈macro〉}

Restores a 〈field〉 from a 〈macro〉 defined with \savefield before. The field is
restored within a local scope.

145

\restorelist{〈literal list〉}{〈macro〉}

Restores a 〈literal list〉 from a 〈macro〉 defined with \savelist before. The list is
restored within a local scope.

\restorename{〈name list〉}{〈macro〉}

Restores a 〈name list〉 from a 〈macro〉 defined with \savename before. The list is
restored within a local scope.

\clearfield{〈field〉}

Clears the 〈field〉 within a local scope. A field cleared this way is treated as unde-
fined by subsequent data commands.

\clearlist{〈literal list〉}

Clears the 〈literal list〉 within a local scope. A list cleared this way is treated as
undefined by subsequent data commands.

\clearname{〈name list〉}

Clears the 〈name list〉 within a local scope. A list cleared this way is treated as
undefined by subsequent data commands.

4.6.2 Stand-alone Tests

The commands in this section are various kinds of stand-alone tests for use in
bibliography and citation styles.

\iffieldundef{〈field〉}{〈true〉}{〈false〉}

Expands to 〈true〉 if the 〈field〉 is undefined, and to 〈false〉 otherwise.

\iflistundef{〈literal list〉}{〈true〉}{〈false〉}

Expands to 〈true〉 if the 〈literal list〉 is undefined, and to 〈false〉 otherwise.

\ifnameundef{〈name list〉}{〈true〉}{〈false〉}

Expands to 〈true〉 if the 〈name list〉 is undefined, and to 〈false〉 otherwise.

\iffieldsequal{〈field 1〉}{〈field 2〉}{〈true〉}{〈false〉}

Expands to 〈true〉 if the values of 〈field 1〉 and 〈field 2〉 are equal, and to 〈false〉
otherwise.

\iflistsequal{〈literal list 1〉}{〈literal list 2〉}{〈true〉}{〈false〉}

Expands to 〈true〉 if the values of 〈literal list 1〉 and 〈literal list 2〉 are equal, and to
〈false〉 otherwise.

\ifnamesequal{〈name list 1〉}{〈name list 2〉}{〈true〉}{〈false〉}

Expands to 〈true〉 if the values of 〈name list 1〉 and 〈name list 2〉 are equal, and to
〈false〉 otherwise.

146

\iffieldequals{〈field〉}{〈macro〉}{〈true〉}{〈false〉}

Expands to 〈true〉 if the value of the 〈field〉 is equal to the definition of 〈macro〉,
and to 〈false〉 otherwise.

\iflistequals{〈literal list〉}{〈macro〉}{〈true〉}{〈false〉}

Expands to 〈true〉 if the value of the 〈literal list〉 is equal to the definition of
〈macro〉, and to 〈false〉 otherwise.

\ifnameequals{〈name list〉}{〈macro〉}{〈true〉}{〈false〉}

Expands to 〈true〉 if the value of the 〈name list〉 is equal to the definition of 〈macro〉,
and to 〈false〉 otherwise.

\iffieldequalcs{〈field〉}{〈csname〉}{〈true〉}{〈false〉}

Similar to \iffieldequals but takes the control sequence name 〈csname〉 (with-
out a leading backslash) as an argument, rather than a macro name.

\iflistequalcs{〈literal list〉}{〈csname〉}{〈true〉}{〈false〉}

Similar to \iflistequals but takes the control sequence name 〈csname〉 (without
a leading backslash) as an argument, rather than a macro name.

\ifnameequalcs{〈name list〉}{〈csname〉}{〈true〉}{〈false〉}

Similar to \ifnameequals but takes the control sequence name 〈csname〉 (without
a leading backslash) as an argument, rather than a macro name.

\iffieldequalstr{〈field〉}{〈string〉}{〈true〉}{〈false〉}

Executes 〈true〉 if the value of the 〈field〉 is equal to 〈string〉, and 〈false〉 otherwise.
This command is robust.

\iffieldxref{〈field〉}{〈true〉}{〈false〉}

If the crossref/xref field of an entry is defined, this command checks if the
〈field〉 is related to the cross-referenced parent entry. It executes 〈true〉 if the
〈field〉 of the child entry is equal to the corresponding 〈field〉 of the parent entry,
and 〈false〉 otherwise. If the crossref/xref field is undefined, it always executes
〈false〉. This command is robust. See the description of the crossref and xref
fields in § 2.2.3 as well as § 2.4.1 for further information concerning cross-referenc-
ing.

\iflistxref{〈literal list〉}{〈true〉}{〈false〉}

Similar to \iffieldxref but checks if a 〈literal list〉 is related to the cross-refer-
enced parent entry. See the description of the crossref and xref fields in § 2.2.3
as well as § 2.4.1 for further information concerning cross-referencing.

\ifnamexref{〈name list〉}{〈true〉}{〈false〉}

Similar to \iffieldxref but checks if a 〈name list〉 is related to the cross-refer-

147

enced parent entry. See the description of the crossref and xref fields in § 2.2.3
as well as § 2.4.1 for further information concerning cross-referencing.

\ifcurrentfield{〈field〉}{〈true〉}{〈false〉}

Executes 〈true〉 if the current field is 〈field〉, and 〈false〉 otherwise. This command
is robust. It is intended for use in field formatting directives and always executes
〈false〉 when used in any other context.

\ifcurrentlist{〈literal list〉}{〈true〉}{〈false〉}

Executes 〈true〉 if the current list is 〈literal list〉, and 〈false〉 otherwise. This com-
mand is robust. It is intended for use in list formatting directives and always exe-
cutes 〈false〉 when used in any other context.

\ifcurrentname{〈name list〉}{〈true〉}{〈false〉}

Executes 〈true〉 if the current list is 〈name list〉, and 〈false〉 otherwise. This com-
mand is robust. It is intended for use in list formatting directives and always exe-
cutes 〈false〉 when used in any other context.

\ifuseprefix{〈true〉}{〈false〉}

Expands to 〈true〉 if the useprefix option is enabled (either globally or for the
current entry), and 〈false〉 otherwise. See § 3.1.3 for details on this option.

\ifuseauthor{〈true〉}{〈false〉}

Expands to 〈true〉 if the useauthor option is enabled (either globally or for the
current entry), and 〈false〉 otherwise. See § 3.1.3 for details on this option.

\ifuseeditor{〈true〉}{〈false〉}

Expands to 〈true〉 if the useeditor option is enabled (either globally or for the
current entry), and 〈false〉 otherwise. See § 3.1.3 for details on this option.

\ifusetranslator{〈true〉}{〈false〉}

Expands to 〈true〉 if the usetranslator option is enabled (either globally or for
the current entry), and 〈false〉 otherwise. See § 3.1.3 for details on this option.

\ifsingletitle{〈true〉}{〈false〉}

Expands to 〈true〉 if there is only one work by the author/editor in the bibliography,
and to 〈false〉 otherwise. Note that this feature needs to be enabled explicitly with
the package option singletitle.

\ifandothers{〈list〉}{〈true〉}{〈false〉}

Expands to 〈true〉 if the 〈list〉 is defined and has been truncated in the bib file with
the keyword ‘and others’, and to 〈false〉 otherwise. The 〈list〉 may be a literal list
or a name list.

\ifmorenames{〈true〉}{〈false〉}

Expands to 〈true〉 if the current name list has been or will be truncated, and to

148

〈false〉 otherwise. This command is intended for use in formatting directives for
name lists. It will always expand to 〈false〉 when used elsewhere. This command
performs the equivalent of an \ifandothers test for the current list. If this test
is negative, it also checks if the listtotal counter is larger than liststop. This
command may be used in a formatting directive to decide if a note such as “and
others” or “et al.” is to be printed at the end of the list. Note that you still need
to check whether you are in the middle or at the end of the list, i. e., whether
listcount is smaller than or equal to liststop, see § 4.4.1 for details.

\ifmoreitems{〈true〉}{〈false〉}

This command is similar to \ifmorenames but checks the current literal list. It is
intended for use in formatting directives for literal lists. It will always expand to
〈false〉 when used elsewhere.

\iffirstinits{〈true〉}{〈false〉}

Expands to 〈true〉 or 〈false〉, depending on the state of the firstinits package
option (see § 3.1.2.3). This command is intended for use in formatting directives
for name lists.

\ifkeyword{〈keyword〉}{〈true〉}{〈false〉}

Executes 〈true〉 if the 〈keyword〉 is found in the keywords field of the entry cur-
rently being processed, and 〈false〉 otherwise.

\ifentrykeyword{〈entrykey〉}{〈keyword〉}{〈true〉}{〈false〉}

A variant of \ifkeyword which takes an entry key as its first argument. This is
useful for testing an entry other than the one currently processed.

\ifcategory{〈category〉}{〈true〉}{〈false〉}

Executes 〈true〉 if the entry currently being processed has been assigned to a
〈category〉 with \addtocategory, and 〈false〉 otherwise.

\ifentrycategory{〈entrykey〉}{〈category〉}{〈true〉}{〈false〉}

A variant of \ifcategory which takes an entry key as its first argument. This is
useful for testing an entry other than the one currently processed.

\ifciteseen{〈true〉}{〈false〉}

Executes 〈true〉 if the entry currently being processed has been cited before, and
〈false〉 otherwise. This command is robust and intended for use in citation styles. If
there are any refsection environments in the document, the citation tracking is
local to these environments. Note that the citation tracker needs to be enabled ex-
plicitly with the package option citetracker. The behavior of this test depends on
the mode the citation tracker is operating in, see § 3.1.2.3 for details. If the citation
tracker is disabled, the test always yields 〈false〉. Also see the \citetrackertrue
and \citetrackerfalse switches in § 4.6.4.

149

\ifentryseen{〈entrykey〉}{〈true〉}{〈false〉}

A variant of \ifciteseen which takes an entry key as its first argument. Since the
〈entrykey〉 is expanded prior to performing the test, it is possible to test for entry
keys in a field such as xref:

\ifentryseen{\thefield{xref}}{true}{false}

Apart from the additional argument, \ifentryseen behaves like \ifciteseen.

\ifciteibid{〈true〉}{〈false〉}

Expands to 〈true〉 if the entry currently being processed is the same as the last
one, and to 〈false〉 otherwise. This command is intended for use in citation styles.
If there are any refsection environments in the document, the tracking is lo-
cal to these environments. Note that the ‘ibidem’ tracker needs to be enabled ex-
plicitly with the package option ibidtracker. The behavior of this test depends
on the mode the tracker is operating in, see § 3.1.2.3 for details. If the tracker
is disabled, the test always yields 〈false〉. Also see the \citetrackertrue and
\citetrackerfalse switches in § 4.6.4.

\ifciteidem{〈true〉}{〈false〉}

Expands to 〈true〉 if the primary name (i. e., the author or editor) in the entry
currently being processed is the same as the last one, and to 〈false〉 otherwise.
This command is intended for use in citation styles. If there are any refsection
environments in the document, the tracking is local to these environments. Note
that the ‘idem’ tracker needs to be enabled explicitly with the package option
idemtracker. The behavior of this test depends on the mode the tracker is oper-
ating in, see § 3.1.2.3 for details. If the tracker is disabled, the test always yields
〈false〉. Also see \citetrackertrue and \citetrackerfalse in § 4.6.4.

\ifopcit{〈true〉}{〈false〉}

This command is similar to \ifciteibid except that it expands to 〈true〉 if the
entry currently being processed is the same as the last one by this author or edi-
tor. Note that the ‘opcit’ tracker needs to be enabled explicitly with the package
option opcittracker. The behavior of this test depends on the mode the tracker
is operating in, see § 3.1.2.3 for details. If the tracker is disabled, the test always
yields 〈false〉. Also see the \citetrackertrue and \citetrackerfalse switches
in § 4.6.4.

\ifloccit{〈true〉}{〈false〉}

This command is similar to \ifopcit except that it also compares the 〈postnote〉
arguments and expands to 〈true〉 only if they match and are numerical (in the
sense of \ifnumerals from § 4.6.2), i. e., \ifloccit will yield true if the citation
refers to the same page cited before. Note that the ‘loccit’ tracker needs to be
enabled explicitly with the package option loccittracker. The behavior of this
test depends on the mode the tracker is operating in, see § 3.1.2.3 for details. If the

150

tracker is disabled, the test always yields 〈false〉. Also see the \citetrackertrue
and \citetrackerfalse switches in § 4.6.4.

\iffirstonpage{〈true〉}{〈false〉}

The behavior of this command is responsive to the package option pagetracker.
If the option is set to page, it expands to 〈true〉 if the current item is the first one
on the page, and to 〈false〉 otherwise. If the option is set to spread, it expands to
〈true〉 if the current item is the first one on the double-page spread, and to 〈false〉
otherwise. If the page tracker is disabled, this test always yields 〈false〉. Depending
on the context, the ‘item’ may be a citation or an entry in the bibliography or
the list of shorthands. Note that this test distinguishes between body text and
footnotes. For example, if used in the first footnote on a page, it will expand to
〈true〉 even if there is a citation in the body text prior to the footnote. Also see the
\pagetrackertrue and \pagetrackerfalse switches in § 4.6.4.

\ifsamepage{〈instance 1〉}{〈instance 2〉}{〈true〉}{〈false〉}

This command expands to 〈true〉 if two instances of a reference are located on
the same page or double-page spread, and to 〈false〉 otherwise. An instance of a
reference may be a citation or an entry in the bibliography or the list of shorthands.
These instances are identified by the value of the instcount counter, see § 4.10.5.
The behavior of this command is responsive to the package option pagetracker.
If this option is set to spread, \ifsamepage is in fact an ‘if same spread’ test. If the
page tracker is disabled, this test always yields 〈false〉. The arguments 〈instance 1〉
and 〈instance 2〉 are treated as integer expressions in the sense of e-TeX’s \numexpr.
This implies that it is possible to make calculations within these arguments, for
example:

\ifsamepage{\value{instcount}}{\value{instcount}-1}{true}{false}

Note that \value is not prefixed by \the and that the subtraction is included in
the second argument in the above example. If 〈instance 1〉 or 〈instance 2〉 is an
invalid number (for example, a negative one), the test yields 〈false〉. Also note
that this test does not distinguish between body text and footnotes. Also see the
\pagetrackertrue and \pagetrackerfalse switches in § 4.6.4.

\ifinteger{〈string〉}{〈true〉}{〈false〉}

Executes 〈true〉 if the 〈string〉 is a positive integer, and 〈false〉 otherwise. This com-
mand is robust.

\ifnumeral{〈string〉}{〈true〉}{〈false〉}

Executes 〈true〉 if the 〈string〉 is an Arabic or Roman numeral, and 〈false〉 other-
wise. This command is robust. See also \DeclareNumChars and \NumCheckSetup
in § 4.6.4.

\ifnumerals{〈string〉}{〈true〉}{〈false〉}

Executes 〈true〉 if the 〈string〉 is a range or a list of Arabic or Roman numer-
als, and 〈false〉 otherwise. This command is robust. In contrast to \ifnumeral,

151

it will also execute 〈true〉 with arguments like “52–58”, “14/15”, “1, 3, 5”, and so
on. See also \DeclareNumChars, \DeclareRangeChars, \DeclareRangeCommands,
and \NumCheckSetup in § 4.6.4.

\ifpages{〈string〉}{〈true〉}{〈false〉}

Similar to \ifnumerals, but also considers \DeclarePageCommands from § 4.6.4.

\iffieldint{〈field〉}{〈true〉}{〈false〉}

Similar to \ifinteger, but uses the value of a 〈field〉 rather than a literal string in
the test. If the 〈field〉 is undefined, it executes 〈false〉.

\iffieldnum{〈field〉}{〈true〉}{〈false〉}

Similar to \ifnumeral, but uses the value of a 〈field〉 rather than a literal string in
the test. If the 〈field〉 is undefined, it executes 〈false〉.

\iffieldnums{〈field〉}{〈true〉}{〈false〉}

Similar to \ifnumerals, but uses the value of a 〈field〉 rather than a literal string
in the test. If the 〈field〉 is undefined, it executes 〈false〉.

\iffieldpages{〈field〉}{〈true〉}{〈false〉}

Similar to \ifpages, but uses the value of a 〈field〉 rather than a literal string in
the test. If the 〈field〉 is undefined, it executes 〈false〉.

\ifbibstring{〈string〉}{〈true〉}{〈false〉}

Expands to 〈true〉 if the 〈string〉 is a known localization key, and to 〈false〉 other-
wise. The localization keys defined by default are listed in § 4.9.2. New ones may
be defined with \NewBibliographyString.

\ifbibxstring{〈string〉}{〈true〉}{〈false〉}

Similar to \ifbibstring, but the 〈string〉 is expanded.

\iffieldbibstring{〈field〉}{〈true〉}{〈false〉}

Similar to \ifbibstring, but uses the value of a 〈field〉 rather than a literal string
in the test. If the 〈field〉 is undefined, it expands to 〈false〉.

\ifdriver{〈entrytype〉}{〈true〉}{〈false〉}

Expands to 〈true〉 if a driver for the 〈entrytype〉 is available, and to 〈false〉 other-
wise.

\ifcapital{〈true〉}{〈false〉}

Executes 〈true〉 if biblatex’s punctuation tracker would capitalize a localization
string at the current location, and 〈false〉 otherwise. This command is robust. It
may be useful for conditional capitalization of certain parts of a name in a format-
ting directive.

152

\ifcitation{〈true〉}{〈false〉}

Expands to 〈true〉 when located in a citation, and to 〈false〉 otherwise. Note that
this command is responsive to the outermost context in which it is used. For exam-
ple, if a citation command defined with \DeclareCiteCommand executes a driver
defined with \DeclareBibliographyDriver, any \ifcitation tests in the driver
code will yield 〈true〉. See § 4.11.6 for a practical example.

\ifbibliography{〈true〉}{〈false〉}

Expands to 〈true〉 when located in a bibliography, and to 〈false〉 otherwise. Note
that this command is responsive to the outermost context in which it is used. For
example, if a driver defined with \DeclareBibliographyDriver executes a cita-
tion command defined with \DeclareCiteCommand, any \ifbibliography tests
in the citation code will yield 〈true〉. See § 4.11.6 for a practical example.

\ifnatbibmode{〈true〉}{〈false〉}

Expands to 〈true〉 or 〈false〉 depending on the natbib option from § 3.1.1.

\ifciteindex{〈true〉}{〈false〉}

Expands to 〈true〉 or 〈false〉 depending on the indexing option from § 3.1.2.1.

\ifbibindex{〈true〉}{〈false〉}

Expands to 〈true〉 or 〈false〉 depending on the indexing option from § 3.1.2.1.

\iffootnote{〈true〉}{〈false〉}

Expands to 〈true〉 when located in a footnote, and to 〈false〉 otherwise. Note that
footnotes in minipage environments are considered to be part of the body text.
This command will only expand to 〈true〉 in footnotes a the bottom of the page
and in endnotes as provided by the endnotes package.

citecounter This counter indicates how many times the entry currently being processed is cited
in the current reference section. Note that this feature needs to be enabled explic-
itly with the package option citecounter. If the option is set to context, citations
in the body text and in footnotes are counted separately. In this case, citecounter
will hold the value of the context it is used in.

uniquename This counter refers to the labelname list. It is set on a per-name basis. Its value is Biber only

0 if the last name is unique, 1 if adding the other parts of the name (first name,
prefix, suYx) as initials will make it unique, and 2 if the full name is required to
disambiguate the name. This information is required by author-year and author-
title citation schemes which add additional parts of the name when citing diVerent
authors with the same last name. For example, if there is one ‘John Doe’ and one
‘Edward Doe’ in the list of references, this counter will be set to 1. If there is one
‘John Doe’ and one ‘Jane Doe’, the value of the counter will be 2. If the option
is set to init/allinit/mininit, the counter will be limited to 1. This is useful
for citations styles which use initials to disambiguate names but never print the
full name in citations. If adding the initials is not suYcient to disambiguate the

153

name, uniquename will also be set to 0 for that name. This feature needs to be
enabled explicitly with the package option uniquename. Note that the uniquename
counter is local to \printnames and that it is only set for the labelname list and
to the name list labelname has been derived from (typically author or editor).
Its value is zero in any other context, i.e., it must be evaluated in the name for-
matting directives handling name lists. See § 4.11.4 for further details and practical
examples.

uniquelist This counter refers to the labelname list. It is set on a per-field basis. Its value Biber only

indicates the number of names required to disambiguate the name list if auto-
matic maxnames/minnames truncation would lead to ambiguous citations. For ex-
ample, if there is one work by ‘Doe/Smith/Johnson’ and another one by ‘Doe/
Edwards/Williams’, setting maxnames=1 would lead to ‘Doe et al.’ in both cases.
In this case, uniquelist would be set to 2 on the labelname lists of both en-
tries because at least the first two names are required to disambiguate them. Note
that the uniquelist counter is local to \printnames and that it is only set for
the labelname list and to the name list labelname has been derived from (typ-
ically author or editor). Its value is zero in any other context. If available, the
uniquelist value will be used automatically by \printnames when processing
the name list, i. e., it will automatically override maxnames/minnames. This feature
needs to be enabled explicitly with the package option uniquelist. See § 4.11.4
for further details and practical examples.

parenlevel The current nesting level of parentheses and/or brackets. This information is only
available if the parentracker from § 3.1.2.3 is enabled.

4.6.3 Tests with \ifboolexpr and \ifthenelse

The tests introduced in § 4.6.2 may also be used with the \ifboolexpr command
provided by the etoolbox package and the \ifthenelse command provided by
the ifthen package. The syntax of the tests is slightly diVerent in this case: the
〈true〉 and 〈false〉 arguments are omitted from the test itself and passed to the
\ifboolexpr or \ifthenelse command instead. Note that the use of these com-
mands implies some processing overhead. If you do not need any boolean opera-
tors, it is more eYcient to use the stand-alone tests from § 4.6.2.

\ifboolexpr{〈expression〉}{〈true〉}{〈false〉}

etoolbox command which allows for complex tests with boolean operators and
grouping:

\ifboolexpr{ (
test {\ifnameundef{editor}}
and
not test {\iflistundef{location}}

)
or test {\iffieldundef{year}}

}
{...}
{...}

154

\ifthenelse{〈tests〉}{〈true〉}{〈false〉}

ifthen command which allows for complex tests with boolean operators and
grouping:

\ifthenelse{ \(
\ifnameundef{editor}
\and
\not \iflistundef{location}

\)
\or \iffieldundef{year}

}
{...}
{...}

The additional tests provided by biblatex are only available when \ifboolexpr
or \ifthenelse are used in citation commands and in the bibliography.

4.6.4 Miscellaneous Commands

The section introduced miscellaneous commands and little helpers for use in bib-
liography and citation styles.

\newbibmacro{〈name〉}[〈arguments〉][〈optional〉]{〈definition〉}
\newbibmacro*{〈name〉}[〈arguments〉][〈optional〉]{〈definition〉}

Defines a macro to be executed via \usebibmacro later. The syntax of this com-
mand is very similar to \newcommand except that 〈name〉 may contain characters
such as numbers and punctuation marks and does not start with a backslash.
The optional argument 〈arguments〉 is an integer specifying the number of argu-
ments taken by the macro. If 〈optional〉 is given, it specifies a default value for
the first argument of the macro, which automatically becomes an optional argu-
ment. In contrast to \newcommand, \newbibmacro issues a warning message if the
macro is already defined, and automatically falls back to \renewbibmacro. As with
\newcommand, the regular variant of this command uses the \long prefix in the def-
inition while the starred one does not. If a macro has been declared to be long, it
may take arguments containing \par tokens. \newbibmacro and \renewbibmacro
are provided for convenience. Style authors are free to use \newcommand or \def
instead. However, note that most shared definitions found in biblatex.def are
defined with \newbibmacro, hence they must be used and modified accordingly.

\renewbibmacro{〈name〉}[〈arguments〉][〈optional〉]{〈definition〉}
\renewbibmacro*{〈name〉}[〈arguments〉][〈optional〉]{〈definition〉}

Similar to \newbibmacro but redefines 〈name〉. In contrast to \renewcommand,
\renewbibmacro issues a warning message if the macro is undefined, and auto-
matically falls back to \newbibmacro.

155

\providebibmacro{〈name〉}[〈arguments〉][〈optional〉]{〈definition〉}
\providebibmacro*{〈name〉}[〈arguments〉][〈optional〉]{〈definition〉}

Similar to \newbibmacro but only defines 〈name〉 if it is undefined. This command
is similar in concept to \providecommand.

\usebibmacro{〈name〉}

Executes the macro 〈name〉, as defined with \newbibmacro. If the macro takes any
arguments, they are simply appended after 〈name〉. \usebibmacro is robust.

\savecommand{〈command〉}
\restorecommand{〈command〉}

These commands save and restore any 〈command〉, which must be a command
name starting with a backslash. Both commands work within a local scope. They
are mainly provided for use in localization files.

\savebibmacro{〈name〉}
\restorebibmacro{〈name〉}

These commands save and restore the macro 〈name〉, where 〈name〉 is the identi-
fier of a macro defined with \newbibmacro. Both commands work within a local
scope. They are mainly provided for use in localization files.

\savefieldformat[〈entry type〉]{〈format〉}
\restorefieldformat[〈entry type〉]{〈format〉}

These commands save and restore the formatting directive 〈format〉, as defined
with \DeclareFieldFormat. Both commands work within a local scope. They are
mainly provided for use in localization files.

\savelistformat[〈entry type〉]{〈format〉}
\restorelistformat[〈entry type〉]{〈format〉}

These commands save and restore the formatting directive 〈format〉, as defined
with \DeclareListFormat. Both commands work within a local scope. They are
mainly provided for use in localization files.

\savenameformat[〈entry type〉]{〈format〉}
\restorenameformat[〈entry type〉]{〈format〉}

These commands save and restore the formatting directive 〈format〉, as defined
with \DeclareNameFormat. Both commands work within a local scope. They are
mainly provided for use in localization files.

\usedriver{〈code〉}{〈entrytype〉}

Executes the bibliography driver for an 〈entrytype〉. Calling this command in the
〈loopcode〉 of a citation command defined with \DeclareCiteCommand is a sim-
ple way to print full citations similar to a bibliography entry. Commands such
as \newblock, which are not applicable in a citation, are disabled automatically.
Additional initialization commands may be passed as the 〈code〉 argument. This

156

argument is executed inside the group in which \usedriver runs the respective
driver. Note that it is mandatory in terms of the syntax but may be left empty. Also
note that this command will automatically switch languages if the babel package
option is enabled.

\bibhypertarget{〈name〉}{〈text〉}

A wrapper for hyperref’s \hypertarget command. The 〈name〉 is the name of
the anchor, the 〈text〉 is arbitrary printable text or code which serves as an anchor.
If there are any refsection environments in the document, the 〈name〉 is local
to the current environment. If the hyperref package option is disabled or the
hyperref package has not been loaded, this command will simply pass on its
〈text〉 argument. See also the formatting directive bibhypertarget in § 4.10.4.

\bibhyperlink{〈name〉}{〈text〉}

A wrapper for hyperref’s \hyperlink command. The 〈name〉 is the name of an
anchor defined with \bibhypertarget, the 〈text〉 is arbitrary printable text or
code to be transformed into a link. If there are any refsection environments in
the document, the 〈name〉 is local to the current environment. If the hyperref
package option is disabled or the hyperref package has not been loaded, this
command will simply pass on its 〈text〉 argument. See also the formatting directive
bibhyperlink in § 4.10.4.

\bibhyperref[〈entrykey〉]{〈text〉}

Transforms 〈text〉 into an internal link pointing to 〈entrykey〉 in the bibliography.
If 〈entrykey〉 is omitted, this command uses the key of the entry currently being
processed. This command is employed to transform citations into clickable links
pointing to the corresponding entry in the bibliography. The link target is marked
automatically by biblatex. If there are multiple bibliographies in a document, the
target will be the first occurence of 〈entrykey〉 in one of the bibliographies. If there
are refsection environments, the links are local to the environment. See also the
formatting directive bibhyperref in § 4.10.4.

\ifhyperref{〈true〉}{〈false〉}

Expands to 〈true〉 if the hyperref package option is enabled (which implies that
the hyperref package has been loaded), and to 〈false〉 otherwise.

\docsvfield{〈field〉}

Similar to the \docsvlist command from the etoolbox package, except that it
takes a field name as its argument. The value of this field is parsed as a comma-
separated list. If the 〈field〉 is undefined, this command expands to an empty string.

\forcsvfield{〈handler〉}{〈field〉}

Similar to the \forcsvlist command from the etoolbox package, except that it
takes a field name as its argument. The value of this field is parsed as a comma-
separated list. If the 〈field〉 is undefined, this command expands to an empty string.

157

\MakeCapital{〈text〉}

Similar to \MakeUppercase but only coverts the first printable character in 〈text〉
to uppercase. Note that the restrictions that apply to \MakeUppercase also apply
to this command. Namely, all commands in 〈text〉 must either be robust or prefixed
with \protect since the 〈text〉 is expanded during capitalization. Apart from Ascii
characters and the standard accent commands, this command also handles the
active characters of the inputenc package as well as the shorthands of the babel
package. If the 〈text〉 starts with a control sequence, nothing is capitalized. This
command is robust.

\MakeSentenceCase{〈text〉}
\MakeSentenceCase*{〈text〉}

Converts its 〈text〉 argument to sentence case, i. e., the first word is capitalized and
the remainder of the string is converted to lowercase. This command is robust. The
starred variant diVers from the regular version in that it considers the language
of the entry, as specified in the hyphenation field. It only converts the 〈text〉 to
sentence case if the hyphenation field is undefined or if it holds a language de-
clared with \DeclareCaseLangs (see below).1 Otherwise, the 〈text〉 is not altered
in any way. It is recommended to use \MakeSentenceCase* rather than the regular
variant in formatting directives. Both variants support the traditional BibTeX con-
vention for bib files that anything wrapped in a pair of curly braces is not modified
when changing the case. For example:

\MakeSentenceCase{an Introduction to LaTeX}
\MakeSentenceCase{an Introduction to {LaTeX}}

would yield:

An introduction to latex
An introduction to LaTeX

In bib files designed with traditional BibTeX in mind, it has been fairly common to
only wrap single letters in braces to prevent case-changing:

title = {An Introduction to {L}a{T}e{X}}

The problem with this convention is that the braces will suppress the kerning on
both sides of the enclosed letter. It is preferable to wrap the entire word in braces
as shown in the first example.

\mkpageprefix[〈pagination〉][〈postpro〉]{〈text〉}

This command is intended for use in field formatting directives which format the
page numbers in the 〈postnote〉 argument of citation commands and the pages
field of bibliography entries. It will parse its 〈text〉 argument and prefix it with ‘p.’
or ‘pp.’ by default. The optional 〈pagination〉 argument holds the name of a field in-

1 By default, converting to sentence case is enabled for the following language identifiers: american,
british, canadian, english, australian, newzealand as well as the aliases USenglish and
UKenglish. Use \DeclareCaseLangs to extend or change this list.

158

Input Output

mincomprange=10 mincomprange=100 mincomprange=1000

11-15 11–5 11–15 11–15
111-115 111–5 111–5 111–115
1111-1115 1111–5 1111–5 1111–5

maxcomprange=1000 maxcomprange=100 maxcomprange=10

1111-1115 1111–5 1111–5 1111–5
1111-1155 1111–55 1111–55 1111–1155
1111-1555 1111–555 1111–1555 1111–1555

mincompwidth=1 mincompwidth=10 mincompwidth=100

1111-1115 1111–5 1111–15 1111–115
1111-1155 1111–55 1111–55 1111–155
1111-1555 1111–555 1111–555 1111–555

Table 8: \mkcomprange setup

dicating the pagination type. This may be either pagination or bookpagination,
with pagination being the default. The spacing between the prefix and the 〈text〉
may be modified by redefining \ppspace. The default is an unbreakable interword
space. See §§ 2.3.10 and 3.11.3 for further details. See also \DeclareNumChars,
\DeclareRangeChars, \DeclareRangeCommands, and \NumCheckSetup. The op-
tional 〈postpro〉 argument specifies a macro to be used for post-processing the
〈text〉. If only one optional argument is given, it is taken as 〈pagination〉. Here are
two typical examples:

\DeclareFieldFormat{postnote}{\mkpageprefix[pagination]{#1}}
\DeclareFieldFormat{pages}{\mkpageprefix[bookpagination]{#1}}

The optional argument pagination in the first example is omissible.

\mkpagetotal[〈pagination〉][〈postpro〉]{〈text〉}

This command is similar to \mkpageprefix except that it is intended for the
pagetotal field of bibliography entries, i. e., it will print “123 pages” rather than
“page 123”. The optional 〈pagination〉 argument defaults to bookpagination. The
spacing inserted between the pagination suYx and the 〈text〉 may be modified by
redefining the macro \ppspace. The optional 〈postpro〉 argument specifies a macro
to be used for post-processing the 〈text〉. If only one optional argument is given, it
is taken as 〈pagination〉. Here is a typical example:

\DeclareFieldFormat{pagetotal}{\mkpagetotal[bookpagination]{#1}}

The optional argument bookpagination is omissible in this case.

\mkcomprange[〈postpro〉]{〈text〉}

This command, which is intended for use in field formatting directives, will parse
its 〈text〉 argument for page ranges and compress them. For example, “125–129”
may be formatted as “125–9”. You may configure the behavior of \mkcomprange by
adjusting the LaTeX counters mincomprange, maxcomprange, and mincompwidth,
as illustrated in table 8. The default settings are 10, 100000, and 1, respectively.

159

This means that the command tries to compress as much as possible by default. Use
\setcounter to adjust the parameters. The scanner recognizes \bibrangedash
and hyphens as range dashes. It will normalize the dash by replacing any number
of consecutive hyphens with \bibrangedash. Lists of ranges delimited with com-
mas and/or semicolons are also supported. If you want to hide a character from
the list/range scanner for some reason, wrap the character or the entire string in
curly braces. The optional 〈postpro〉 argument specifies a macro to be used for post-
processing the 〈text〉. This is important if you want to combine \mkcomprange with
other formatting macros which also need to parse their 〈text〉 argument, such as
\mkpageprefix. Simply nesting these commands will not work as expected. Use
the 〈postpro〉 argument to set up the processing chain as follows:

\DeclareFieldFormat{postnote}{\mkcomprange[{\mkpageprefix[pagination]}]{#1}}

Note that \mkcomprange is executed first, using \mkpageprefix as post-processor.
Also note that the 〈postpro〉 argument is wrapped in an additional pair of braces.
This is only required in this particular case to prevent LaTeX’s optional argument
scanner from getting confused by the nested brackets.

\mkfirstpage[〈postpro〉]{〈text〉}

This command, which is intended for use in field formatting directives, will parse
its 〈text〉 argument for page ranges and print the start page of the range only. The
scanner recognizes \bibrangedash and hyphens as range dashes. Lists of ranges
delimited with commas and/or semicolons are also supported. If you want to hide
a character from the list/range scanner for some reason, wrap the character or the
entire string in curly braces. The optional 〈postpro〉 argument specifies a macro
to be used for post-processing the 〈text〉. See \mkcomprange on how to use this
argument.

\DeclareNumChars{〈characters〉}
\DeclareNumChars*{〈characters〉}

This command configures the \ifnumeral, \ifnumerals, and \ifpages tests from
§ 4.6.2. The setup will also aVect \iffieldnum, \iffieldnums, \iffieldpages as
well as \mkpageprefix and \mkpagetotal. The 〈characters〉 argument is an unde-
limited list of characters which are to be considered as being part of a number. The
regular version of this command replaces the current setting, the starred version
appends its argument to the current list. The default setting is:

\DeclareNumChars{.}

This means that a (section or other) number like ‘3.4.5’ will be considered as a
number. Note that Arabic and Roman numerals are detected by default, there is
no need to declare them explicitly.

\DeclareRangeChars{〈characters〉}
\DeclareRangeChars*{〈characters〉}

This command configures the \ifnumerals and \ifpages tests from § 4.6.2. The
setup will also aVect \iffieldnums and \iffieldpages as well as \mkpageprefix

160

and \mkpagetotal. The 〈characters〉 argument is an undelimited list of characters
which are to be considered as range indicators. The regular version of this com-
mand replaces the current setting, the starred version appends its argument to the
current list. The default setting is:

\DeclareRangeChars{~,;-+/}

This means that strings like ‘3–5’, ‘35+’, ‘8/9’ and so on will be considered as a
range by \ifnumerals and \ifpages. See also §§ 2.3.10 and 3.11.3 for further
details.

\DeclareRangeCommands{〈commands〉}
\DeclareRangeCommands*{〈commands〉}

This command is similar to \DeclareRangeChars, except that the 〈commands〉
argument is an undelimited list of commands which are to be considered as range
indicators. The regular version of this command replaces the current setting, the
starred version appends its argument to the current list. The default list is rather
long and should cover all common cases; here is a shorter example:

\DeclareRangeCommands{\&\bibrangedash\textendash\textemdash\psq\psqq}

See also §§ 2.3.10 and 3.11.3 for further details.

\DeclarePageCommands{〈commands〉}
\DeclarePageCommands*{〈commands〉}

This command is similar to \DeclareRangeCommands, except that it only aVects
the \ifpages and \iffieldpages tests but not \ifnumerals and \iffieldnums.
The default setting is:

\DeclarePageCommands{\pno\ppno}

\NumCheckSetup{〈code〉}

Use this command to temporarily redefine any commands which interfere with
the tests performed by \ifnumeral, \ifnumerals, and \ifpages from § 4.6.2.
The setup will also aVect \iffieldnum, \iffieldnums, \iffieldpages as well
as \mkpageprefix and \mkpagetotal. The 〈code〉 will be executed in a group by
these commands. Since the above mentioned commands will expand the string
to be analyzed, it is possible to remove commands to be ignored by the tests by
making them expand to an empty string. See also §§ 2.3.10 and 3.11.3 for further
details.

\DeclareCaseLangs{〈languages〉}
\DeclareCaseLangs*{〈languages〉}

Defines the list of languages which are considered by the \MakeSentenceCase*
command as it converts a string to sentence case. The 〈languages〉 argument is a
comma-separated list of babel languages identifiers. The regular version of this
command replaces the current setting, the starred version appends its argument
to the current list. The default setting is:

161

\DeclareCaseLangs{%
american,british,canadian,english,australian,newzealand,
USenglish,UKenglish}

See the babel manual and table 1 for a list of languages identifiers.

\BibliographyWarning{〈message〉}

This command is similar to \PackageWarning but prints the entry key of the entry
currently being processed in addition to the input line number. It may be used in
the bibliography as well as in citation commands. If the 〈message〉 is fairly long, use
\MessageBreak to include line breaks. Note that the standard \PackageWarning
command does not provide a meaningful clue when used in the bibliography since
the input line number is the line on which the \printbibliography command
was given.

\RequireBiber[〈severity〉]

This command is intended for use in cbx/bbx files and in the @preamble of bib
files. It checks the selected backend and warns if it is not Biber. The optional
〈severity〉 argument is an integer specifying the severity. The value 1 triggers an in-
formational message stating that Biber is recommended; 2 triggers a warning stat-
ing that Biber is required and the style/bib file may not work properly; 3 triggers
an error stating that Biber is strictly required and the style/bib file will not work at
all with any other backend. If \RequireBiber is used multiple times, the highest
〈severity〉 takes precedence. cbx/bbx files on the one hand and the @preamble snip-
pets of all bib files on the other are tracked seperately. If the optional 〈severity〉
argument is omitted, the default severity is 2 (warning).

\pagetrackertrue
\pagetrackerfalse

These commands activate or deactivate the citation tracker locally (this will aVect
the \iffirstonpage and \ifsamepage test from § 4.6.2). They are intended for
use in the definition of citation commands or anywhere in the document body. If a
citation command is to be excluded from page tracking, use \pagetrackerfalse
in the 〈precode〉 argument of \DeclareCiteCommand. See § 4.3.1 for details. Note
that these commands have no eVect if page tracking has been disabled globally.

\citetrackertrue
\citetrackerfalse

These commands activate or deactivate all citation trackers locally (this will af-
fect the \ifciteseen, \ifentryseen, \ifciteibid, and \ifciteidem tests from
§ 4.6.2). They are intended for use in the definition of citation commands or any-
where in the document body. If a citation command is to be excluded from tracking,
use \citetrackerfalse in the 〈precode〉 argument of \DeclareCiteCommand. See
§ 4.3.1 for details. Note that these commands have no eVect if tracking has been
disabled globally.

\backtrackertrue
\backtrackerfalse

These commands activate or deactivate the backref tracker locally. They are in-
tended for use in the definition of citation commands or anywhere in the doc-
ument body. If a citation command is to be excluded from backtracking, use
\backtrackerfalse in the 〈precode〉 argument of \DeclareCiteCommand. Note
that these commands have no eVect if the backref option has been not been set
globally.

162

4.7 Punctuation and Spacing

The biblatex package provides elaborate facilities designed to manage and track
punctuation and spacing in the bibliography and in citations. These facilities work
on two levels. The high-level commands discussed in § 4.7.1 deal with punctu-
ation and whitespace inserted by the bibliography style between the individual
segments of a bibliography entry. The commands in §§ 4.7.2, 4.7.3, 4.7.4 work at a
lower level. They use TeX’s space factor and modified space factor codes to track
punctuation in a robust and eYcient way. This way it is possible to detect trailing
punctuation marks within fields, not only those explicitly inserted between fields.
The same technique is also used for automatic capitalization of localization strings,
see \DeclareCapitalPunctuation in § 4.7.5 as well as § 4.8 for details. Note that
these facilities are only made available locally in citations and bibliographies. They
will not aVect any other part of a document.

4.7.1 Block and Unit Punctuation

The major segments of a bibliography entry are ‘blocks’ and ‘units’. A block is the
larger segment of the two, a unit is shorter or at most equal in length. For example,
the values of fields such as title or note usually form a unit which is separated
from subsequent data by a period or a comma. A block may comprise several fields
which are treated as separate units, for example publisher, location, and year.
The segmentation of an entry into blocks and units is at the discretion of the
bibliography style. An entry is segmented by inserting \newblock and \newunit
commands at suitable places and \finentry at the very end (see § 4.2.3 for an
example). See also § 4.11.7 for some practical hints.

\newblock Records the end of a block. This command does not print anything, it merely marks
the end of the block. The block delimiter \newblockpunct will be inserted by a sub-
sequent \printtext, \printfield, \printlist, \printnames, or \bibstring
command. You may use \newblock at suitable places without having to worry
about spurious blocks. A new block will only be started by the next \printfield
(or similar) command if this command prints anything. See § 4.11.7 for further
details.

\newunit Records the end of a unit and puts the default delimiter \newunitpunct in the
punctuation buVer. This command does not print anything, it merely marks the
end of the unit. The punctuation buVer will be inserted by the next \printtext,
\printfield, \printlist, \printnames, or \bibstring command. You may use
\newunit after commands like \printfield without having to worry about spu-
rious punctuation and whitespace. The buVer will only be inserted by the next
\printfield or similar command if both fields are non-empty. This also applies to
\printtext, \printlist, \printnames, and \bibstring. See § 4.11.7 for further
details.

\finentry Inserts \finentrypunct. This command should be used at the very end of every
bibliography entry.

163

\setunit{〈punctuation〉}
\setunit*{〈punctuation〉}

The \setunit command is similar to \newunit except that it uses 〈punctuation〉
instead of \newunitpunct. The starred variant diVers from the regular version in
that it checks if the last \printtext, \printfield, \printlist, \printnames, or
\bibstring command did actually print anything. If not, it does nothing.

\setpunctfont{〈command〉}

This command, which is intended for use in field formatting directives, provides an
alternative way of dealing with unit punctuation after a field printed in a diVerent
font (for example, a title printed in italics). The standard LaTeX way of dealing
with this is adding a small amount of space, the so-called italic correction. This
command allows adapting the punctuation to the font of the preceeding field. The
〈command〉 should be a text font command which takes one argument, such as
\emph or \textbf. This command will only aVect punctuation marks inserted by
one of the commands from § 4.7.3. The font adaption is applied to the next punc-
tuation mark only and will be reset automatically thereafter. If you want to reset
it manually before it takes eVect, issue \resetpunctfont. If the punctfont pack-
age option is disabled, this command does nothing. Note that the \mkbibemph and
\mkbibbold wrappers from § 4.10.4 incorporate this feature by default.

\resetpunctfont This command resets the unit punctuation font defined with \setpunctfont be-
fore it takes eVect. If the punctfont package option is disabled, this command
does nothing.

4.7.2 Punctuation Tests

The following commands may be used to test for preceding punctuation marks at
any point in citations and the bibliography.

\ifpunct{〈true〉}{〈false〉}

Executes 〈true〉 if preceded by any punctuation mark except for an abbreviation
dot, and 〈false〉 otherwise.

\ifterm{〈true〉}{〈false〉}

Executes 〈true〉 if preceded by a terminal punctuation mark, and 〈false〉 otherwise.
A terminal punctuation mark is any punctuation mark which has been registered
for automatic capitalization, either with \DeclareCapitalPunctuation or by de-
fault, see § 4.7.5 for details. By default, this applies to periods, exclamation marks,
and question marks.

\ifpunctmark{〈character〉}{〈true〉}{〈false〉}

Executes 〈true〉 if preceded by the punctuation mark 〈character〉, and 〈false〉 other-
wise. The 〈character〉 may be a comma, a semicolon, a colon, a period, an exclama-
tion mark, a question mark, or an asterisk. Note that a period denotes an end-of-
sentence period. Use the asterisk to test for the dot after an abbreviation. If this

164

command is used in a formatting directive for name lists, i. e., in the argument to
\DeclareNameFormat, the 〈character〉 may also be an apostrophe.

4.7.3 Adding Punctuation

The following commands are designed to prevent double punctuation marks. Bib-
liography and citation styles should always use these commands instead of lit-
eral punctuation marks. All \add... commands in this section automatically re-
move preceding whitespace with \unspace (see § 4.7.4). Note that the behavior
of all \add... commands discussed below is the package default, which is re-
stored whenever biblatex switches languages. This behavior may be adjusted
with \DeclarePunctuationPairs from § 4.7.5.

\adddot Adds a period unless it is preceded by any punctuation mark. The purpose of this
command is inserting the dot after an abbreviation. Any dot inserted this way is
recognized as such by the other punctuation commands. This command may also
be used to turn a previously inserted literal period into an abbreviation dot.

\addcomma Adds a comma unless it is preceded by another comma, a semicolon, a colon, or a
period.

\addsemicolon Adds a semicolon unless it is preceded by a comma, another semicolon, a colon,
or a period.

\addcolon Adds a colon unless it is preceded by a comma, a semicolon, another colon, or a
period.

\addperiod Adds a period unless it is preceded by an abbreviation dot or any other punctuation
mark. This command may also be used to turn a previously inserted abbreviation
dot into a period, for example at the end of a sentence.

\addexclam Adds an exclamation mark unless it is preceded by any punctuation mark except
for an abbreviation dot.

\addquestion Adds a question mark unless it is preceded by any punctuation mark except for an
abbreviation dot.

\isdot Turns a previously inserted literal period into an abbreviation dot. In contrast to
\adddot, nothing is inserted if this command is not preceded by a period.

\nopunct Adds an internal marker which will cause the next punctuation command to print
nothing.

4.7.4 Adding Whitespace

The following commands are designed to prevent spurious whitespace. Bibliogra-
phy and citation styles should always use these commands instead of literal white-
space. In contrast to the commands in §§ 4.7.2 and 4.7.3, they are not restricted to
citations and the bibliography but available globally.

\unspace Removes preceding whitespace, i. e., removes all skips and penalties from the end
of the current horizontal list. This command is implicitly executed by all of the
following commands.

165

\addspace Adds a breakable interword space.

\addnbspace Adds a non-breakable interword space.

\addthinspace Adds a breakable thin space.

\addnbthinspace Adds a non-breakable thin space. This is similar to \, and \thinspace.

\addlowpenspace Adds a space penalized by the value of the lownamepenalty counter, see §§ 3.8.3
and 4.10.3 for details.

\addhighpenspace Adds a space penalized by the value of the highnamepenalty counter, see §§ 3.8.3
and 4.10.3 for details.

\addlpthinspace Similar to \addlowpenspace but adds a breakable thin space.

\addhpthinspace Similar to \addhighpenspace but adds a breakable thin space.

\addabbrvspace Adds a space penalized by the value of the abbrvpenalty counter, see §§ 3.8.3 and
4.10.3 for details.

\addabthinspace Similar to \addabbrvspace but using a thin space.

\adddotspace Executes \adddot and adds a space penalized by the value of the abbrvpenalty
counter, see §§ 3.8.3 and 4.10.3 for details.

\addslash Adds a breakable slash. This command diVers from the \slash command in the
LaTeX kernel in that a linebreak after the slash is not penalized at all.

Note that the commands in this section implicitly execute \unspace to remove spu-
rious whitespace, hence they may be used to override each other. For example, you
may use \addnbspace to transform a previously inserted interword space into a
non-breakable one and \addspace to turn a non-breakable space into a breakable
one.

4.7.5 Configuring Punctuation and Capitalization

The following commands configure various features related to punctuation and
automatic capitalization.

\DeclareAutoPunctuation{〈characters〉}

This command defines the punctuation marks to be considered by the citation
commands as they scan ahead for punctuation. Note that 〈characters〉 is an unde-
limited list of characters. Valid 〈characters〉 are period, comma, semicolon, colon,
exclamation and question mark. The default setting is:

\DeclareAutoPunctuation{.,;:!?}

This definition is restored automatically whenever the autopunct package option
is set to true. Executing \DeclareAutoPunctuation{} is equivalent to setting
autopunct=false, i. e., it disables this feature.

\DeclareCapitalPunctuation{〈characters〉}

When biblatex inserts localization strings, i. e., key terms such as ‘edition’ or

166

‘volume’, it automatically capitalizes them after terminal punctuation marks. This
command defines the punctuation marks which will cause localization strings to
be capitalized if one of them preceds a string. Note that 〈characters〉 is an unde-
limited list of characters. Valid 〈characters〉 are period, comma, semicolon, colon,
exclamation and question mark. The package default is:

\DeclareCapitalPunctuation{.!?}

Using \DeclareCapitalPunctuation with an empty argument is equivalent to
disabling automatic capitalization. Since this feature is language specific, this com-
mand must be used in the argument to \DefineBibliographyExtras (when used
in the preamble) or \DeclareBibliographyExtras (when used in a localization
module). See §§ 3.7 and 4.9 for details. By default, strings are capitalized after pe-
riods, exclamation marks, and question marks. All strings are generally capitalized
at the beginning of a paragraph (in fact whenever TeX is in vertical mode).

\DeclarePunctuationPairs{〈identifier〉}{〈characters〉}

Use this command to declare valid pairs of punctuation marks. This will aVect
the punctuation commands discussed in § 4.7.3. For example, the description of
\addcomma states that this command adds a comma unless it is preceded by an-
other comma, a semicolon, a colon, or a period. In other words, commas after
abbreviation dots, exclamation marks, and question marks are permitted. These
valid pairs are declared as follows:

\DeclarePunctuationPairs{comma}{*!?}

The 〈identifier〉 selects the command to be configured. The identifiers correspond
to the names of the punctuation commands from § 4.7.3 without the \add prefix,
i. e., valid 〈identifier〉 strings are dot, comma, semicolon, colon, period, exclam,
question. The 〈characters〉 argument is an undelimited list of punctuation marks.
Valid 〈characters〉 are comma, semicolon, colon, period, exclamation mark, ques-
tion mark, and asterisk. A period in the 〈characters〉 argument denotes an end-of-
sentence period, an asterisk the dot after an abbreviation. This is the default setup,
which is automatically restored whenever biblatex switches languages and corre-
sponds to the behavior described in § 4.7.3:

\DeclarePunctuationPairs{dot}{}
\DeclarePunctuationPairs{comma}{*!?}
\DeclarePunctuationPairs{semicolon}{*!?}
\DeclarePunctuationPairs{colon}{*!?}
\DeclarePunctuationPairs{period}{}
\DeclarePunctuationPairs{exclam}{*}
\DeclarePunctuationPairs{question}{*}

Since this feature is language specific, \DeclarePunctuationPairs must be used
in the argument to \DefineBibliographyExtras (when used in the preamble) or
\DeclareBibliographyExtras (when used in a localization module). See §§ 3.7

167

and 4.9 for details. Note that some localization modules may use a setup which is
diVerent from the package default.1

\DeclareQuotePunctuation{〈characters〉}

This command controls ‘American-style’ punctuation. The \mkbibquote wrapper
from § 4.10.4 can interact with the punctuation facilities discussed in §§ 4.7.1, 4.7.3,
4.7.4. Punctuation marks after \mkbibquote will be moved inside the quotes if they
have been registered with \DeclareQuotePunctuation. Note that 〈characters〉 is
an undelimited list of characters. Valid 〈characters〉 are period, comma, semicolon,
colon, exclamation and question mark. Here is an example:

\DeclareQuotePunctuation{.,}

Executing \DeclareQuotePunctuation{} is equivalent to disabling this feature.
This is the package default. Since this feature is language specific, this command
must be used in the argument to \DefineBibliographyExtras (when used in the
preamble) or \DeclareBibliographyExtras (when used in a localization mod-
ule). See §§ 3.7 and 4.9 for details. See also § 3.9.1.

\uspunctuation A shorthand using the lower-level commands \DeclareQuotePunctuation and
\DeclarePunctuationPairs to activate ‘American-style’ punctuation. See § 3.9.1
for details. This shorthand is provided for convenience only. The eVective settings
are applied by the lower-level commands.

\stdpunctuation Undoes the settings applied by \uspunctuation, restoring standard punctuation.
As standard punctuation is the default setting, you only need this command to
override a previously executed \uspunctuation command. See § 3.9.1 for details.

4.7.6 Correcting Punctuation Tracking

The facilities for punctuation tracking and automatic capitalization are very reli-
able under normal circumstances, but there are always marginal cases which may
require manual intervention. Typical cases are localization strings printed as the
first word in a footnote (which is usually treated as the beginning of a paragaph as
far as capitalization is concerned, but TeX is not in vertical mode at this point) or
punctuation after periods which are not really end-of-sentence periods (for exam-
ple, after an ellipsis like “[. . .]” a command such as \addperiod would do nothing
since parentheses and brackets are transparent to the punctuation tracker). In such
cases, use the following commands in bibliography and citation styles to mark the
beginning or middle of a sentence if and where required:

\bibsentence This command marks the beginning of a sentence. A localization string immedi-
ately after this command will be capitalized and the punctuation tracker is reset,
i. e., this command hides all preceding punctuation marks from the punctuation
tracker and enforces capitalization.

\midsentence This command marks the middle of a sentence. A localization string immediately
after this command will not be capitalized and the punctuation tracker is reset,

1 As of this writing, the american module uses diVerent settings for ‘American-style’ punctuation.

168

i. e., this command hides all preceding punctuation marks from the punctuation
tracker and suppresses capitalization.

\midsentence* The starred variant of \midsentence diVers from the regular one in that a preced-
ing abbreviation dot is not hidden from the the punctuation tracker, i. e., any code
after \midsentence* will see a preceding abbreviation dot. All other punctuation
marks are hidden from the punctuation tracker and capitalization is suppressed.

4.8 Localization Strings

Localization strings are key terms such as ‘edition’ or ‘volume’ which are automati-
cally translated by biblatex’s localization modules. See § 4.9 for an overview and
§ 4.9.2 for a list of all strings supported by default. The commands in this section
are used to print the localized term.

\bibstring[〈wrapper〉]{〈key〉}

Prints the localization string 〈key〉, where 〈key〉 is an identifier in lowercase letters
(see § 4.9.2). The string will be capitalized as required, see § 4.7.5 for details.
Depending on the abbreviate package option from § 3.1.2.1, \bibstring prints
the short or the long version of the string. If localization strings are nested, i. e.,
if \bibstring is used in another string, it will behave like \bibxstring. If the
〈wrapper〉 argument is given, the string is passed to the 〈wrapper〉 for formatting.
This is intended for font commands such as \emph.

\biblstring[〈wrapper〉]{〈key〉}

Similar to \bibstring but always prints the long string, ignoring the abbreviate
option.

\bibsstring[〈wrapper〉]{〈key〉}

Similar to \bibstring but always prints the short string, ignoring the abbreviate
option.

\bibcpstring[〈wrapper〉]{〈key〉}

Similar to \bibstring but the term is always capitalized.

\bibcplstring[〈wrapper〉]{〈key〉}

Similar to \biblstring but the term is always capitalized.

\bibcpsstring[〈wrapper〉]{〈key〉}

Similar to \bibsstring but the term is always capitalized.

\bibucstring[〈wrapper〉]{〈key〉}

Similar to \bibstring but the whole term is uppercased.

\bibuclstring[〈wrapper〉]{〈key〉}

Similar to \biblstring but the whole term is uppercased.

169

\bibucsstring[〈wrapper〉]{〈key〉}

Similar to \bibsstring but the whole term is uppercased.

\biblcstring[〈wrapper〉]{〈key〉}

Similar to \bibstring but the whole term is lowercased.

\biblclstring[〈wrapper〉]{〈key〉}

Similar to \biblstring but the whole term is lowercased.

\biblcsstring[〈wrapper〉]{〈key〉}

Similar to \bibsstring but the whole term is lowercased.

\bibxstring{〈key〉}

A simplified but expandable version of \bibstring. Note that this variant does
not capitalize automatically, nor does it hook into the punctuation tracker. It is
intended for special cases in which strings are nested or an expanded localization
string is required in a test.

\bibxlstring[〈wrapper〉]{〈key〉}

Similar to \bibxstring but always uses the long string, ignoring the abbreviate
option.

\bibxsstring[〈wrapper〉]{〈key〉}

Similar to \bibxstring but always uses the short string, ignoring the abbreviate
option.

4.9 Localization Modules

A localization module provides translations for key terms such as ‘edition’ or ‘vol-
ume’ as well as definitions for language specific features such as the date format
and ordinals. These definitions are provided in files with the suYx lbx. The base
name of the file must be a language name known to the babel package. The lbx
files may also be used to map babel’s language names to the backend modules
of the biblatex package. All localization modules are loaded on demand in the
document body. Note that the contents of the file are processed in a group and
that the category code of the character @ is temporarily set to ‘letter’.

4.9.1 Localization Commands

The user-level versions of the localization commands were already introduced in
§ 3.7. When used in lbx files, however, the syntax of localization commands is
diVerent from the user syntax in the preamble and the configuration file. When
used in localization files, there is no need to specify the 〈language〉 because the
mapping of strings to a language is already provided by the name of the lbx file.

\DeclareBibliographyStrings{〈definitions〉}

This command is only available in lbx files. It is used to define localization strings.

170

The 〈definitions〉 consist of 〈key〉=〈value〉 pairs which assign an expression to an
identifier. A complete list of all keys supported by default is given is § 4.9.2. Note
that the syntax of the value is diVerent in lbx files. The value assigned to a key
consists of two expressions, each of which is wrapped in an additional pair of
brackets. This is best shown by example:

\DeclareBibliographyStrings{%
bibliography = {{Bibliography}{Bibliography}},
shorthands = {{List of Abbreviations}{Abbreviations}},
editor = {{editor}{ed.}},
editors = {{editors}{eds.}},

}

The first value is the long, written out expression, the second one is an abbreviated
or short form. Both strings must always be given even though they may be identical
if an expression is always (or never) abbreviated. Depending on the setting of the
abbreviate package option (see § 3.1.2.1), biblatex selects one expression when
loading the lbx file. There is also a special key named inherit which copies the
strings from a diVerent language. This is intended for languages which only diVer
in a few expressions, such as German and Austrian or American and British English.
For example, here are the complete definitions for Austrian:

\DeclareBibliographyStrings{%
inherit = {german},
january = {{J\"anner}{J\"an.}},

}

The above examples are slightly simplified. Real localization files should use the
punctuation and formatting commands discussed in §§ 4.7.3 and 3.8 instead of
literal puntuation. Here is an excerpt from a real localization file:

bibliography = {{Bibliography}{Bibliography}},
shorthands = {{List of Abbreviations}{Abbreviations}},
editor = {{editor}{ed\adddot}},
editors = {{editors}{eds\adddot}},
byeditor = {{edited by}{ed\adddotspace by}},
mathesis = {{Master’s thesis}{MA\addabbrvspace thesis}},

Note the handling of abbreviation dots, the spacing in abbreviated expressions,
and the capitalization in the example above. All expressions should be capitalized
as they usually are when used in the middle of a sentence. The biblatex pack-
age will automatically capitalize the first word when required at the beginning of
a sentence, see \DeclareCapitalPunctuation in § 4.7.5 for details. Expressions
intended for use in headings are special. They should be capitalized in a way that
is suitable for titling and should not be abbreviated (but they may have a short
form).

\InheritBibliographyStrings{〈language〉}

This command is only available in lbx files. It copies the localization strings for
〈language〉 to the current language, as specified by the name of the lbx file.

171

\DeclareBibliographyExtras{〈code〉}

This command is only available in lbx files. It is used to adapt language specific
features such as the date format and ordinals. The 〈code〉, which may be arbitrary
LaTeX code, will usually consist of redefinitions of the formatting commands from
§ 4.10.2.

\UndeclareBibliographyExtras{〈code〉}

This command is only available in lbx files. It is used to restore any formatting
commands modified with \DeclareBibliographyExtras. If a redefined command
is included in § 4.10.2, there is no need to restore its previous definition since these
commands are localized by all language modules anyway.

\InheritBibliographyExtras{〈language〉}

This command is only available in lbx files. It copies the bibliography extras for
〈language〉 to the current language, as specified by the name of the lbx file.

\DeclareHyphenationExceptions{〈text〉}

This command corresponds to \DefineHyphenationExceptions from § 3.7. The
diVerence is that it is only available in lbx files and that the 〈language〉 argument
is omitted. The hyphenation exceptions will aVect the language of the lbx file
currently being processed.

\DeclareRedundantLanguages{〈language, language, ...〉}{〈babel, babel, ...〉}

This command provides the language mappings required by the clearlang option
from § 3.1.2.1. The 〈language〉 is the string given in the language field (without
the optional lang prefix); 〈babel〉 is babel’s language identifier, as given in the
optional argument of \usepackage when loading babel. This command may be
used in lbx files or in the document preamble. Here are some examples:

\DeclareRedundantLanguages{french}{french}
\DeclareRedundantLanguages{german}{german,ngerman,austrian,naustrian}
\DeclareRedundantLanguages{english,american}{english,american,british,

canadian,australian,newzealand,USenglish,UKenglish}

Note that this feature needs to be enabled globally with the clearlang option from
§ 3.1.2.1. If it is disabled, all mappings will be ignored. If the 〈babel〉 parameter is
blank, biblatex will clear the mappings for the corresponding 〈language〉, i. e.,
the feature will be disabled for this 〈language〉 only.

\DeclareLanguageMapping{〈language〉}{〈file〉}

This command maps a babel language identifier to an lbx file. The 〈language〉
must be a language name known to the babel package, i. e., one of the identifiers
listed in table 1. The 〈file〉 argument is the name of an alternative lbx file without
the .lbx suYx. Declaring the same mapping more than once is possible. Subse-
quent declarations will simply overwrite any previous ones. This command may
only be used in the preamble. See § 4.11.8 for further details.

172

\NewBibliographyString{〈key〉}

This command, which may be used in the preamble (including cbx and bbx files)
as well as in lbx files, declares new localization strings, i. e., it initializes a new
〈key〉 to be used in the 〈definitions〉 of \DefineBibliographyStrings. The 〈key〉
argument may also be a comma-separated list of key names. The keys listed in
§ 4.9.2 are defined by default.

4.9.2 Localization Keys

The localization keys in this section are defined by default and covered by the local-
ization files which come with biblatex. Note that these strings are only available
in citations, the bibliography, and the list of shorthands. All expressions should be
capitalized as they usually are when used in the middle of a sentence. biblatex
will capitalize them automatically at the beginning of a sentence. The only excep-
tions to these rules are the three strings intended for use in headings.

4.9.2.1 Headings

The following strings are special because they are intended for use in headings and
made available globally via macros. For this reason, they should be capitalized for
use in headings and they must not include any local commands which are part of
biblatex’s author interface.

bibliography The term ‘bibliography’, also available as \bibname.
references The term ‘references’, also available as \refname.

shorthands The term ‘list of shorthands’ or ‘list of abbreviations’, also available as \losname.

4.9.2.2 Roles, Expressed as Functions

The following keys refer to roles which are expressed as a function (‘editor’, ‘trans-
lator’) rather than as an action (‘edited by’, ‘translated by’).

editor The term ‘editor’, referring to the main editor. This is the most generic editorial
role.

editors The plural form of editor.
compiler The term ‘compiler’, referring to an editor whose task is to compile a work.

compilers The plural form of compiler.
founder The term ‘founder’, referring to a founding editor.

founders The plural form of founder.
continuator An expression like ‘continuator’, ‘continuation’, or ‘continued’, referring to a past

editor who continued the work of the founding editor but was subsequently
replaced by the current editor.

continuators The plural form of continuator.
redactor The term ‘redactor’, referring to a secondary editor.

redactors The plural form of redactor.
reviser The term ‘reviser’, referring to a secondary editor.

revisers The plural form of reviser.
collaborator A term like ‘collaborator’, ‘collaboration’, ‘cooperator’, or ‘cooperation’, referring

to a secondary editor.

173

collaborators The plural form of collaborator.
translator The term ‘translator’.

translators The plural form of translator.
commentator The term ‘commentator’, referring to the author of a commentary to a work.

commentators The plural form of commentators.
annotator The term ‘annotator’, referring to the author of annotations to a work.

annotators The plural form of annotators.

4.9.2.3 Concatenated Editor Roles, Expressed as Functions

The following keys are similar in function to editor, translator, etc. They are
used to indicate additional roles of the editor, e. g.,‘editor and translator’, ‘editor
and foreword’.

editortr Used if editor/translator are identical.
editorstr The plural form of editortr.
editorco Used if editor/commentator are identical.

editorsco The plural form of editorco.
editoran Used if editor/annotator are identical.

editorsan The plural form of editoran.
editorin Used if editor/introduction are identical.

editorsin The plural form of editorin.
editorfo Used if editor/foreword are identical.

editorsfo The plural form of editorfo.
editoraf Used if editor/aftword are identical.

editorsaf The plural form of editoraf.

Keys for editor/translator/〈role〉 combinations:

editortrco Used if editor/translator/commentator are identical.
editorstrco The plural form of editortrco.
editortran Used if editor/translator/annotator are identical.

editorstran The plural form of editortran.
editortrin Used if editor/translator/introduction are identical.

editorstrin The plural form of editortrin.
editortrfo Used if editor/translator/foreword are identical.

editorstrfo The plural form of editortrfo.
editortraf Used if editor/translator/aftword are identical.

editorstraf The plural form of editortraf.

Keys for editor/commentator/〈role〉 combinations:

editorcoin Used if editor/commentator/introduction are identical.
editorscoin The plural form of editorcoin.
editorcofo Used if editor/commentator/foreword are identical.

editorscofo The plural form of editorcofo.
editorcoaf Used if editor/commentator/aftword are identical.

editorscoaf The plural form of editorcoaf.

Keys for editor/annotator/〈role〉 combinations:

174

editoranin Used if editor/annotator/introduction are identical.
editorsanin The plural form of editoranin.
editoranfo Used if editor/annotator/foreword are identical.

editorsanfo The plural form of editoranfo.
editoranaf Used if editor/annotator/aftword are identical.

editorsanaf The plural form of editoranaf.

Keys for editor/translator/commentator/〈role〉 combinations:

editortrcoin Used if editor/translator/commentator/introduction are identical.
editorstrcoin The plural form of editortrcoin.
editortrcofo Used if editor/translator/commentator/foreword are identical.

editorstrcofo The plural form of editortrcofo.
editortrcoaf Used if editor/translator/commentator/aftword are identical.

editorstrcoaf The plural form of editortrcoaf.

Keys for editor/annotator/commentator/〈role〉 combinations:

editortranin Used if editor/annotator/commentator/introduction are identical.
editorstranin The plural form of editortranin.
editortranfo Used if editor/annotator/commentator/foreword are identical.

editorstranfo The plural form of editortranfo.
editortranaf Used if editor/annotator/commentator/aftword are identical.

editorstranaf The plural form of editortranaf.

4.9.2.4 Concatenated Translator Roles, Expressed as Functions

The following keys are similar in function to translator. They are used to indicate
additional roles of the translator, e. g.,‘translator and commentator’, ‘translator and
introduction’.

translatorco Used if translator/commentator are identical.
translatorsco The plural form of translatorco.
translatoran Used if translator/annotator are identical.

translatorsan The plural form of translatoran.
translatorin Used if translator/introduction are identical.

translatorsin The plural form of translatorin.
translatorfo Used if translator/foreword are identical.

translatorsfo The plural form of translatorfo.
translatoraf Used if translator/aftword are identical.

translatorsaf The plural form of translatoraf.

Keys for translator/commentator/〈role〉 combinations:

translatorcoin Used if translator/commentator/introduction are identical.
translatorscoin The plural form of translatorcoin.
translatorcofo Used if translator/commentator/foreword are identical.

translatorscofo The plural form of translatorcofo.
translatorcoaf Used if translator/commentator/aftword are identical.

translatorscoaf The plural form of translatorcoaf.

175

Keys for translator/annotator/〈role〉 combinations:

translatoranin Used if translator/annotator/introduction are identical.
translatorsanin The plural form of translatoranin.
translatoranfo Used if translator/annotator/foreword are identical.

translatorsanfo The plural form of translatoranfo.
translatoranaf Used if translator/annotator/aftword are identical.

translatorsanaf The plural form of translatoranaf.

4.9.2.5 Roles, Expressed as Actions

The following keys refer to roles which are expressed as an action (‘edited by’,
‘translated by’) rather than as a function (‘editor’, ‘translator’).

byauthor The expression ‘[created] by 〈name〉’.
byeditor The expression ‘edited by 〈name〉’.

bycompiler The expression ‘compiled by 〈name〉’.
byfounder The expression ‘founded by 〈name〉’.

bycontinuator The expression ‘continued by 〈name〉’.
byredactor The expression ‘redacted by 〈name〉’.

byreviser The expression ‘revised by 〈name〉’.
bycollaborator An expression like ‘in collaboration with 〈name〉’ or ‘in cooperation with 〈name〉’.

bytranslator The expression ‘translated by 〈name〉’ or ‘translated from 〈language〉 by 〈name〉’.
bycommentator The expression ‘commented by 〈name〉’.

byannotator The expression ‘annotated by 〈name〉’.

4.9.2.6 Concatenated Editor Roles, Expressed as Actions

The following keys are similar in function to byeditor, bytranslator, etc. They
are used to indicate additional roles of the editor, e. g.,‘edited and translated by’,
‘edited and furnished with an introduction by’, ‘edited, with a foreword, by’.

byeditortr Used if editor/translator are identical.
byeditorco Used if editor/commentator are identical.
byeditoran Used if editor/annotator are identical.
byeditorin Used if editor/introduction are identical.
byeditorfo Used if editor/foreword are identical.
byeditoraf Used if editor/aftword are identical.

Keys for editor/translator/〈role〉 combinations:

byeditortrco Used if editor/translator/commentator are identical.
byeditortran Used if editor/translator/annotator are identical.
byeditortrin Used if editor/translator/introduction are identical.
byeditortrfo Used if editor/translator/foreword are identical.
byeditortraf Used if editor/translator/aftword are identical.

Keys for editor/commentator/〈role〉 combinations:

byeditorcoin Used if editor/commentator/introduction are identical.
byeditorcofo Used if editor/commentator/foreword are identical.

176

byeditorcoaf Used if editor/commentator/aftword are identical.

Keys for editor/annotator/〈role〉 combinations:

byeditoranin Used if editor/annotator/introduction are identical.
byeditoranfo Used if editor/annotator/foreword are identical.
byeditoranaf Used if editor/annotator/aftword are identical.

Keys for editor/translator/commentator/〈role〉 combinations:

byeditortrcoin Used if editor/translator/commentator/introduction are identical.
byeditortrcofo Used if editor/translator/commentator/foreword are identical.
byeditortrcoaf Used if editor/translator/commentator/aftword are identical.

Keys for editor/translator/annotator/〈role〉 combinations:

byeditortranin Used if editor/annotator/commentator/introduction are identical.
byeditortranfo Used if editor/annotator/commentator/foreword are identical.
byeditortranaf Used if editor/annotator/commentator/aftword are identical.

4.9.2.7 Concatenated Translator Roles, Expressed as Actions

The following keys are similar in function to bytranslator. They are used to indi-
cate additional roles of the translator, e. g.,‘translated and commented by’, ‘trans-
lated and furnished with an introduction by’, ‘translated, with a foreword, by’.

bytranslatorco Used if translator/commentator are identical.
bytranslatoran Used if translator/annotator are identical.
bytranslatorin Used if translator/introduction are identical.
bytranslatorfo Used if translator/foreword are identical.
bytranslatoraf Used if translator/aftword are identical.

Keys for translator/commentator/〈role〉 combinations:

bytranslatorcoin Used if translator/commentator/introduction are identical.
bytranslatorcofo Used if translator/commentator/foreword are identical.
bytranslatorcoaf Used if translator/commentator/aftword are identical.

Keys for translator/annotator/〈role〉 combinations:

bytranslatoranin Used if translator/annotator/introduction are identical.
bytranslatoranfo Used if translator/annotator/foreword are identical.
bytranslatoranaf Used if translator/annotator/aftword are identical.

4.9.2.8 Roles, Expressed as Objects

Roles which are related to supplementary material may also be expressed as ob-
jects (‘with a commentary by’) rather than as functions (‘commentator’) or as ac-
tions (‘commented by’).

withcommentator The expression ‘with a commentary by 〈name〉’.
withannotator The expression ‘with annotations by 〈name〉’.

withintroduction The expression ‘with an introduction by 〈name〉’.
withforeword The expression ‘with a foreword by 〈name〉’.

177

withafterword The expression ‘with an afterword by 〈name〉’.

4.9.2.9 Supplementary Material

commentary The term ‘commentary’.
annotations The term ‘annotations’.
introduction The term ‘introduction’.

foreword The term ‘foreword’.
afterword The term ‘afterword’.

4.9.2.10 Publication Details

volume The term ‘volume’, referring to a book.
volumes The plural form of volume.

jourvol The term ‘volume’, referring to a journal.
jourser The term ‘series’, referring to a journal.

newseries The expression ‘new series’, referring to a journal.
oldseries The expression ‘old series’, referring to a journal.

edition The term ‘edition’.
in The term ‘in’, referring to the title of a work published as part of another one,

e. g.,‘〈title of article〉 in 〈title of journal〉’.
inseries The term ‘in’, as used in expressions like ‘volume 〈number〉 in 〈name of series〉’.
ofseries The term ‘of’, as used in expressions like ‘volume 〈number〉 of 〈name of series〉’.
number The term ‘number’, referring to an issue of a journal.
chapter The term ‘chapter’, referring to a chapter in a book.
version The term ‘version’, referring to a revision number.
reprint The term ‘reprint’.

reprintof The expression ‘reprint of 〈title〉’.
reprintas The expression ‘reprinted as 〈title〉’.

4.9.2.11 Publication State

inpress The expression ‘in press’.
inpreparation The expression ‘in preparation’, referring to manuscript being prepared for

publication.
submitted The expression ‘submitted’, referring to an article or paper submitted to a journal

or conference.

4.9.2.12 Pagination

page The term ‘page’.
pages The plural form of page.

column The term ‘column’, referring to a column on a page.
columns The plural form of column.
section The term ‘section’, referring to a document division (usually abbreviated as §).

sections The plural form of section (usually abbreviated as §§).
paragraph The term ‘paragraph’ (i. e., a block of text, not to be confused with section).

paragraphs The plural form of paragraph.
verse The term ‘verse’ as used when referring to a work which is cited by verse

numbers.

178

verses The plural form of verse.
line The term ‘line’ as used when referring to a work which is cited by line numbers.

lines The plural form of line.

4.9.2.13 Types

The following keys are typically used in the type field of @thesis, @report, @misc,
and other entries:

mathesis An expression equivalent to the term ‘Master’s thesis’.
phdthesis The term ‘PhD thesis’, ‘PhD dissertation’, ‘doctoral thesis’, etc.

techreport The term ‘technical report’.
resreport The term ‘research report’.
software The term ‘computer software’.

datacd The term ‘data cd’ or ‘cd-rom’.
audiocd The term ‘audio cd’.

4.9.2.14 Miscellaneous

and The term ‘and’, as used in a list of authors or editors, for example.
andothers The expression ‘and others’ or ‘et alii’, used to mark the truncation of a name list.
andmore Like andothers but used to mark the truncation of a literal list.

4.9.2.15 Labels

The following strings are intended for use as labels, e. g., ‘Address: 〈url〉’ or ‘Ab-
stract: 〈abstract〉’.

url The term ‘address’ in the sense of an internet address.
urlseen An expression like ‘accessed on 〈date〉’, ‘retrieved on 〈date〉’, ‘visited on 〈date〉’,

referring to the access date of an online resource.
file The term ‘file’.

library The term ‘library’.
abstract The term ‘abstract’.

annotation The term ‘annotations’.

4.9.2.16 Citations

Traditional scholarly expressions used in citations:

idem The term equivalent to the Latin ‘idem’ (‘the same [person]’).
idemsf The feminine singular form of idem.

idemsm The masculine singular form of idem.
idemsn The neuter singular form of idem.
idempf The feminine plural form of idem.

idempm The masculine plural form of idem.
idempn The neuter plural form of idem.
idempp The plural form of idem suitable for a mixed gender list of names.
ibidem The term equivalent to the Latin ‘ibidem’ (‘in the same place’).

opcit The term equivalent to the Latin term ‘opere citato’ (‘[in] the work [already]
cited’).

179

loccit The term equivalent to the Latin term ‘loco citato’ (‘[at] the place [already]
cited’).

confer The term equivalent to the Latin ‘confer’ (‘compare’).
sequens The term equivalent to the Latin ‘sequens’ (‘[and] the following [page]’), as used

to indicate a range of two pages when only the starting page is provided
(e. g.,‘25 sq.’ or ‘25 f.’ instead of ‘25–26’).

sequentes The term equivalent to the Latin ‘sequentes’ (‘[and] the following [pages]’), as
used to indicate an open-ended range of pages when only the starting page is
provided (e. g.,‘25 sqq.’ or ‘25 V.’).

passim The term equivalent to the Latin ‘passim’ (‘throughout’, ‘here and there’,
‘scatteredly’).

Other expressions frequently used in citations:

see The term ‘see’.
seealso The expression ‘see also’.

seenote An expression like ‘see note 〈footnote〉’ or ‘as in 〈footnote〉’, used to refer to a
previous footnote in a citation.

backrefpage An expression like ‘see page 〈page〉’ or ‘cited on page 〈page〉’, used to introduce
back references in the bibliography.

backrefpages The plural form of backrefpage, e. g., ‘see pages 〈pages〉’ or ‘cited on pages
〈pages〉’.

quotedin An expression like ‘quoted in 〈citation〉’, used when quoting a passage which was
already a quotation in the cited work.

citedas An expression like ‘henceforth cited as 〈shorthand〉’, used to introduce a
shorthand in a citation.

thiscite The expression used in some verbose citation styles to diVerentiate between the
page range of the cited item (typically an article in a journal, collection, or
conference proceedings) and the page number the citation refers to. For example:
“Author, Title, in: Book, pp. 45–61, thiscite p. 52.”

4.9.2.17 Month Names

january The name ‘January’.
february The name ‘February’.

march The name ‘March’.
april The name ‘April’.
may The name ‘May’.
june The name ‘June’.
july The name ‘July’.

august The name ‘August’.
september The name ‘September’.

october The name ‘October’.
november The name ‘November’.
december The name ‘December’.

4.9.2.18 Language Names

langamerican The language ‘American’ or ‘American English’.

180

langbrazilian The language ‘Brazilian’ or ‘Brazilian Portuguese’.
langdanish The language ‘Danish’.
langdutch The language ‘Dutch’.

langenglish The language ‘English’.
langfrench The language ‘French’.

langgerman The language ‘German’.
langgreek The language ‘Greek’.

langitalian The language ‘Italian’.
langlatin The language ‘Latin’.

langnorwegian The language ‘Norwegian’.
langportuguese The language ‘Portuguese’.

langspanish The language ‘Spanish’.
langswedish The language ‘Swedish’.

The following strings are intended for use in phrases like ‘translated from [the]
English by 〈translator〉’:

fromamerican The expression ‘from [the] American’ or ‘from [the] American English’.
frombrazilian The expression ‘from [the] Brazilian’ or ‘from [the] Brazilian Portuguese’.

fromdanish The expression ‘from [the] Danish’.
fromdutch The expression ‘from [the] Dutch’.

fromenglish The expression ‘from [the] English’.
fromfrench The expression ‘from [the] French’.

fromgerman The expression ‘from [the] German’.
fromgreek The expression ‘from [the] Greek’.

fromitalian The expression ‘from [the] Italian’.
fromlatin The expression ‘from [the] Latin’.

fromnorwegian The expression ‘from [the] Norwegian’.
fromportuguese The expression ‘from [the] Portuguese’.

fromspanish The expression ‘from [the] Spanish’.
fromswedish The expression ‘from [the] Swedish’.

4.9.2.19 Country Names

Country names are localized by using the string country plus the iso-3166 country
code as the key. The short version of the translation should be the iso-3166 country
code. Note that only a small number of country names is defined by default, mainly
to illustrate this scheme. These keys are used in the location list of @patent
entries but they may be useful for other purposes as well.

countryde The name ‘Germany’, abbreviated as DE.
countryeu The name ‘European Union’, abbreviated as EU.
countryep Similar to countryeu but abbreviated as EP. This is intended for patent entries.
countryfr The name ‘France’, abbreviated as FR.

countryuk The name ‘United Kingdom’, abbreviated (according to iso-3166) as GB.
countryus The name ‘United States of America’, abbreviated as US.

181

4.9.2.20 Patents and Patent Requests

Strings related to patents are localized by using the term patent plus the iso-3166
country code as the key. Note that only a small number of patent keys is defined
by default, mainly to illustrate this scheme. These keys are used in the type field
of @patent entries.

patent The generic term ‘patent’.
patentde The expression ‘German patent’.
patenteu The expression ‘European patent’.
patentfr The expression ‘French patent’.

patentuk The expression ‘British patent’.
patentus The expression ‘U.S. patent’.

Patent requests are handled in a similar way, using the string patreq as the base
name of the key:

patreq The generic term ‘patent request’.
patreqde The expression ‘German patent request’.
patreqeu The expression ‘European patent request’.
patreqfr The expression ‘French patent request’.

patrequk The expression ‘British patent request’.
patrequs The expression ‘U.S. patent request’.

4.10 Formatting Commands

This section corresponds to § 3.8 in the user part of this manual. Bibliography
and citation styles should incorporate the commands and facilities discussed in
this section in order to provide a certain degree of high-level configurability. Users
should not be forced to write new styles if all they want to do is modify the spacing
in the bibliography or the punctuation used in citations.

4.10.1 User-definable Commands and Hooks

This section corresponds to § 3.8.1 in the user part of the manual. The commands
and hooks discussed here are meant to be redefined by users, but bibliography and
citation styles may provide a default definition which is diVerent from the package
default. These commands are defined in biblatex.def. Note that all commands
starting with \mk... take one mandatory argument.

\bibnamedelima This delimiter controls the spacing between the elements which make up a name Biber only

part. It is inserted automatically by the backend after the first name element if
the element is less than three characters long and before the last element. The
default definition is \addhighpenspace, i. e., a space penalized by the value of the
highnamepenalty counter (§ 3.8.3). Please refer to § 3.11.4 for further details.

\bibnamedelimb This delimiter controls the spacing between the elements which make up a name Biber only

part. It is inserted automatically by the backend between all name elements where
\bibnamedelima does not apply. The default definition is \addlowpenspace, i. e.,
a space penalized by the value of the lownamepenalty counter (§ 3.8.3). Please
refer to § 3.11.4 for further details.

182

\bibnamedelimc This delimiter controls the spacing between name parts. The default name for-
mats use it between the name prefix and the last name if useprefix=true. The
default definition is \addhighpenspace, i. e., a space penalized by the value of the
highnamepenalty counter (§ 3.8.3). Please refer to § 3.11.4 for further details.

\bibnamedelimd This delimiter controls the spacing between name parts. The default name for-
mats use it between all name parts where \bibnamedelimc does not apply. The
default definition is \addlowpenspace, i. e., a space penalized by the value of the
lownamepenalty counter (§ 3.8.3). Please refer to § 3.11.4 for further details.

\bibnamedelimi This delimiter replaces \bibnamedelima/b after initials. Note that this only applies Biber only

to initials given as such in the bib file, not to the initials automatically generated
by biblatex which use their own set of delimiters.

\bibinitperiod The punctuation inserted automatically by the backend after all initials unless Biber only

\bibinithyphendelim applies. The default definition is a period (\adddot). Please
refer to § 3.11.4 for further details.

\bibinitdelim The spacing inserted automatically by the backend between multiple initials unless Biber only

\bibinithyphendelim applies. The default definition is an unbreakable interword
space. Please refer to § 3.11.4 for further details.

\bibinithyphendelim The punctuation inserted automatically by the backend between the initials of hy- Biber only

phenated name parts, replacing \bibinitperiod and \bibinitdelim. The default
definition is a period followed by an unbreakable hyphen. Please refer to § 3.11.4
for further details.

\bibindexnamedelima Replaces \bibnamedelima in the index.

\bibindexnamedelimb Replaces \bibnamedelimb in the index.

\bibindexnamedelimc Replaces \bibnamedelimc in the index.

\bibindexnamedelimd Replaces \bibnamedelimd in the index.

\bibindexnamedelimi Replaces \bibnamedelimi in the index.

\bibindexinitperiod Replaces \bibinitperiod in the index.

\bibindexinitdelim Replaces \bibinitdelim in the index.

\bibindexinithyphendelim Replaces \bibinithyphendelim in the index.

\bibnamedash The dash to be used as a replacement for recurrent authors or editors in the bib-
liography. The default is an ‘em’ or an ‘en’ dash, depending on the indentation of
the list of references.

\labelnamepunct The separator to be printed after the name used for alphabetizing in the biblio-
graphy (author or editor, if the author field is undefined). Use this separator
instead of \newunitpunct at this location. The default is \newunitpunct, i. e., it
is not handled diVerently from regular unit punctuation but permits convenient
reconfiguration.

\subtitlepunct The separator to be printed between the fields title and subtitle, booktitle

183

and booksubtitle, as well as maintitle and mainsubtitle. Use this separator
instead of \newunitpunct at this location. The default is \newunitpunct, i. e., it
is not handled diVerently from regular unit punctuation but permits convenient
reconfiguration.

\intitlepunct The separator to be printed between the word “in” and the following title in entry
types such as @article, @inbook, @incollection, etc. Use this separator instead
of \newunitpunct at this location. The default definition is a colon plus an inter-
word space.

\bibpagespunct The separator to be printed before the pages field. Use this separator instead of
\newunitpunct at this location. The default is a comma plus an interword space.

\bibpagerefpunct The separator to be printed before the pageref field. Use this separator instead of
\newunitpunct at this location. The default is an interword space.

\multinamedelim The delimiter to be printed between multiple items in a name list like author or
editor if there are more than two names in the list. If there are only two names in
the list, use the \finalnamedelim instead. This command should be incorporated
in all formatting directives for name lists.

\finalnamedelim Use this command instead of \multinamedelim before the final name in a name
list.

\revsdnamedelim The extra delimiter to be printed after the first name in a name list (in addition to
\finalnamedelim) if the first name is reversed. This command should be incorpo-
rated in all formatting directives for name lists.

\andothersdelim The delimiter to be printed before the localization string ‘andothers’ if a name list
like author or editor is truncated. This command should be incorporated in all
formatting directives for name lists.

\multilistdelim The delimiter to be printed between multiple items in a literal list like publisher
or location if there are more than two names in the list. If there are only two
items in the list, use the \finallistdelim instead. This command should be in-
corporated in all formatting directives for literal lists.

\finallistdelim Use this command instead of \multilistdelim before the final item in a literal
list.

\andmoredelim The delimiter to be printed before the localization string ‘andmore’ if a literal list
like publisher or location is truncated. This command should be incorporated
in all formatting directives for literal lists.

\multicitedelim The delimiter printed between citations if multiple entry keys are passed to a
single citation command. This command should be incorporated in the defini-
tion of all citation commands, for example in the 〈sepcode〉 argument passed to
\DeclareCiteCommand. See § 4.3.1 for details.

\supercitedelim Similar to \multinamedelim, but intended for the \supercite command only.

\compcitedelim Similar to \multicitedelim, but intended for citation styles which ‘compress’ mul-

184

tiple citations, i. e., print the author only once if subsequent citations share the
same author etc.

\nametitledelim The delimiter to be printed between the author/editor and the title. This command
should be incorporated in the definition of all citation commands of author-title
and some verbose citation styles.

\nameyeardelim The delimiter to be printed between the author/editor and the year. This command
should be incorporated in the definition of all citation commands of author-year
citation styles.

\prenotedelim The delimiter to be printed after the 〈prenote〉 argument of a citation command.

\postnotedelim The delimiter to be printed after the 〈postnote〉 argument of a citation command.

\mkbibnamelast{〈text〉}

Formatting hook for the last name, to be used in all formatting directives for name
lists.

\mkbibnamefirst{〈text〉}

Similar to \mkbibnamelast, but intended for the first name.

\mkbibnameprefix{〈text〉}

Similar to \mkbibnamelast, but intended for the name prefix.

\mkbibnameaffix{〈text〉}

Similar to \mkbibnamelast, but intended for the name aYx.

4.10.2 Language-specific Commands

This section corresponds to § 3.8.2 in the user part of the manual. The commands
discussed here are usually handled by the localization modules, but may also be
redefined by users on a per-language basis. Note that all commands starting with
\mk... take one or more mandatory arguments.

\bibrangedash The language specific range dash.

\bibdatedash The language specific date range dash.

\mkbibdatelong Takes the names of three field as arguments which correspond to three date com-
ponents (in the order year/month/day) and uses their values to print the date in
the language specific long date format.

\mkbibdateshort Similar to \mkbibdatelong but using the language specific short date format.

\finalandcomma Prints the comma to be inserted before the final ‘and’ in an enumeration, if appli-
cable in the respective language.

\mkbibordinal{〈integer〉}

Takes an integer argument and prints it as an ordinal number.

185

\mkbibmascord{〈integer〉}

Similar to \mkbibordinal, but prints a masculine ordinal, if applicable in the re-
spective language.

\mkbibfemord{〈integer〉}

Similar to \mkbibordinal, but prints a feminine ordinal, if applicable in the re-
spective language.

\mkbibordedition{〈integer〉}

Similar to \mkbibordinal, but intended for use with the term ‘edition’.

\mkbibordseries{〈integer〉}

Similar to \mkbibordinal, but intended for use with the term ‘series’.

4.10.3 User-definable Lengths and Counters

This section corresponds to § 3.8.3 in the user part of the manual. The length reg-
isters and counters discussed here are meant to be altered by users. Bibliography
and citation styles should incorporate them where applicable and may also provide
a default setting which is diVerent from the package default.

\bibhang The hanging indentation of the bibliography. Bibliography styles should incorpo-
rate this length in the definition of the bibliography environment, if applicable.

\biblabelsep The horizontal space between entries and their corresponding labels. Bibliography
styles which use list environments and print a label should set \labelsep to
\biblabelsep in the definition of the respective environment.

\bibitemsep The vertical space between the individual entries in the bibliography. Bibliogra-
phy styles using list environments should set \itemsep to \bibitemsep in the
definition of the respective environment.

\bibparsep The vertical space between paragraphs within an entry in the bibliography. Biblio-
graphy styles using list environments should set \parsep to \bibparsep in the
definition of the respective environment.

abbrvpenalty The penalty used by \addabbrvspace, \addabthinspace, and \adddotspace, see
§ 4.7.4 for details.

lownamepenalty The penalty used by \addlowpenspace and \addlpthinspace, see § 4.7.4 for de-
tails.

highnamepenalty The penalty used by \addhighpenspace and \addhpthinspace, see § 4.7.4 for
details.

4.10.4 Auxiliary Commands and Hooks

The auxiliary commands and facilities in this section serve a special purpose. Some
of them are used by biblatex to communicate with bibliography and citation
styles in some way or other.

186

\mkbibemph{〈text〉}

A generic command which prints its argument in italics. This is a simple wrapper
around the standard \emph command. Apart from that, it uses \setpunctfont
from § 4.7.1 to adapt the font of the next punctuation mark following the text set
in italics. If the punctfont package option is disabled, this command behaves like
\emph.

\mkbibbold{〈text〉}

Similar in concept to \mkbibemph but prints bold text. This is a simple wrapper
around the standard \textbf command which incorporates \setpunctfont. If
the punctfont package option is disabled, this command behaves like \textbf.

\mkbibquote{〈text〉}

A generic command which wraps its argument in quotation marks. If the csquotes
package is loaded, this command uses the language sensitive quotation marks pro-
vided by that package. \mkbibquote also supports ‘American-style’ punctuation,
see \DeclareQuotePunctuation in § 4.7.5 for details.

\mkbibparens{〈text〉}

A generic command which wraps its argument in parentheses. This command is
nestable. When nested, it will alternate between parentheses and brackets, depend-
ing on the nesting level.

\mkbibbrackets{〈text〉}

A generic command which wraps its argument in square brackets. This command
is nestable. When nested, it will alternate between brackets and parentheses, de-
pending on the nesting level.

\bibopenparen〈text〉\bibcloseparen

Alternative syntax for \mkbibparens. This will also work across groups. Note that
\bibopenparen and \bibcloseparen must always be balanced.

\bibopenbracket〈text〉\bibclosebracket

Alternative syntax for \mkbibbrackets. This will also work across groups. Note
that \bibopenbracket and \bibclosebracket must always be balanced.

\mkbibfootnote{〈text〉}

A generic command which prints its argument as a footnote. This is a wrapper
around the standard LaTeX \footnote command which removes spurious white-
space preceeding the footnote mark and prevents nested footnotes. By default,
\mkbibfootnote requests capitalization at the beginning of the note and automat-
ically adds a period at the end. You may change this behavior by redefining the
\bibfootnotewrapper macro introduced below.

187

\mkbibfootnotetext{〈text〉}

Similar to \mkbibfootnote but uses the \footnotetext command.

\mkbibendnote{〈text〉}

Similar in concept to \mkbibfootnote execept that it prints its argument as an end-
note. \mkbibendnote removes spurious whitespace preceeding the endnote mark
and prevents nested notes. It supports the \endnote command provided by the
endnotes package as well as the \pagenote command provided by the pagenote
package and the memoir class. If both commands are available, \endnote takes
precedence. If no endnote support is available, \mkbibendnote issues an error and
falls back to \footnote. By default, \mkbibendnote requests capitalization at the
beginning of the note and automatically adds a period at the end. You may change
this behavior by redefining the \bibendnotewrapper macro introduced below.

\mkbibendnotetext{〈text〉}

Similar to \mkbibendnote but uses the \endnotetext command. Please note that
as of this writing, neither the pagenote package nor the memoir class provide a
corresponding \pagenotetext command. In this case, \mkbibendnote will issue
an error and fall back to \footnotetext.

\bibfootnotewrapper{〈text〉}

An inner wrapper which encloses the 〈text〉 argument of \mkbibfootnote and
\mkbibfootnotetext. For example, \mkbibfootnote eventually boils down to
this:

\footnote{\bibfootnotewrapper{text}}

The wrapper ensures capitalization at the beginning of the note and adds a period
at the end. The default definition is:

\newcommand{\bibfootnotewrapper}[1]{\bibsentence #1\addperiod}

If you don’t want capitalization at the beginning or a period at the end of the note,
do not modify \mkbibfootnote but redefine \bibfootnotewrapper instead.

\bibendnotewrapper{〈text〉}

Similar in concept to \bibfootnotewrapper but related to the \mkbibendnote
and \mkbibendnotetext commands.

\mkbibsuperscript{〈text〉}

A generic command which prints its argument as superscripted text. This is a sim-
ple wrapper around the standard LaTeX \textsuperscript command which re-
moves spurious whitespace and allows hyphenation of the preceeding word.

\mkbibmonth{〈integer〉}

This command takes an integer argument and prints it as a month name. Even

188

though the output of this command is language specific, its definition is not, hence
it is normally not redefined in localization modules.

\mkdatezeros{〈integer〉}

This command strips leading zeros from a number or preserves them, depending
on the datezeros package option (§ 3.1.2.1). It is intended for use in the definition
of date formatting macros.

\stripzeros{〈integer〉}

This command strips leading zeros from a number. It is intended for date format-
ting and ordinals.

shorthandwidth A special field formatting directive which is used internally by biblatex. When
the bibliographic data is read from the bbl file, biblatex measures the values of
all shorthand fields and sets the length register \shorthandwidth to the width
of the widest shorthand (see § 4.10.5). In order to determine the correct width,
the package considers two factors: the definition of \bibfont and this formatting
directive. All styles should adjust this directive such that it corresponds to the
format used in the list of shorthands.

labelnumberwidth Similar to shorthandwidth, but referring to the labelnumber field and the length
register \labelnumberwidth. Numeric styles should adjust this directive such that
it corresponds to the format used in the bibliography.

labelalphawidth Similar to shorthandwidth, but referring to the labelalpha field and the length
register \labelalphawidth. Alphabetic styles should adjust this directive such that
it corresponds to the format used in the bibliography.

bibhyperref A special formatting directive for use with \printfield and \printtext. This
directive wraps its argument in a \bibhyperref command, see § 4.6.4 for details.

bibhyperlink A special formatting directive for use with \printfield and \printtext. It wraps
its argument in a \bibhyperlink command, see § 4.6.4 for details. The 〈name〉
argument passed to \bibhyperlink is the value of the entrykey field.

bibhypertarget A special formatting directive for use with \printfield and \printtext. It wraps
its argument in a \bibhypertarget command, see § 4.6.4 for details. The 〈name〉
argument passed to \bibhypertarget is the value of the entrykey field.

volcitepages A special formatting directive which controls the format of the page/text portion
in the argument of citation commands like \volcite.

volcitevolume A special formatting directive which controls the format of the volume portion in
the argument of citation commands like \volcite.

4.10.5 Auxiliary Lengths, Counters, and Other Features

The length registers and counters discussed here are used by biblatex to pass in-
formation to bibliography and citation styles. Think of them as read-only registers.
Note that all counters are LaTeX counters. Use \value{counter} to read out the
current value.

189

\shorthandwidth This length register indicates the width of the widest shorthand. Bibliography
styles should incorporate this length in the definition of the list of shorthands, if
applicable.

\labelnumberwidth This length register indicates the width of the widest labelnumber. Numeric bib-
liography styles should incorporate this length in the definition of the bibliography
environment.

\labelalphawidth This length register indicates the width of the widest labelalpha. Alphabetic bib-
liography styles should incorporate this length in the definition of the bibliography
environment.

maxextraalpha This counter holds the highest number found in any extraalpha field.

maxextrayear This counter holds the highest number found in any extrayear field.

refsection This counter indicates the current refsection environment. When queried in a
bibliography heading, the counter returns the value of the refsection option
passed to \printbibliography.

refsegment This counter indicates the current refsegment environment. When queried in a
bibliography heading, this counter returns the value of the refsegment option
passed to \printbibliography.

maxnames This counter holds the setting of the maxnames package option.

minnames This counter holds the setting of the minnames package option.

maxitems This counter holds the setting of the maxitems package option.

minitems This counter holds the setting of the minitems package option.

instcount This counter is incremented by biblatex for every citation as well as for every
entry in the bibliography and the list of shorthands. The value of this counter
uniquely identifies a single instance of a reference in the document.

citetotal This counter, which is only available in the 〈loopcode〉 of a citation command
defined with \DeclareCiteCommand, holds the total number of valid entry keys
passed to the citation command.

citecount This counter, which is only available in the 〈loopcode〉 of a citation command de-
fined with \DeclareCiteCommand, holds the number of the entry key currently
being processed by the 〈loopcode〉.

multicitetotal This counter is similar to citetotal but only available in multicite commands. It
holds the total number of citations passed to the multicite command. Note that
each of these citations may consist of more than one entry key. This information
is provided by the citetotal counter.

multicitecount This counter is similar to citecount but only available in multicite commands. It
holds the number of the citation currently being processed. Note that this cita-
tion may consist of more than one entry key. This information is provided by the
citetotal and citecount counters.

190

listtotal This counter holds the total number of items in the current list. It is intended
for use in list formatting directives and does not hold a meaningful value when
used anywhere else. As an exception, it may also be used in the second optional
argument to \printnames and \printlist, see § 4.4.1 for details. For every list,
there is also a counter by the same name which holds the total number of items
in the corresponding list. For example, the author counter holds the total number
of items in the author list. This applies to both name lists and literal lists. These
counters are similar to listtotal except that they may also be used independently
of list formatting directives. For example, a bibliography style might check the
editor counter to decide Whether or not to print the term “editor” or rather its
plural form “editors” after the list of editors.

listcount This counter holds the number of the list item currently being processed. It is
intended for use in list formatting directives and does not hold a meaningful value
when used anywhere else.

liststart This counter holds the 〈start〉 argument passed to \printnames or \printlist.
It is intended for use in list formatting directives and does not hold a meaningful
value when used anywhere else.

liststop This counter holds the 〈stop〉 argument passed to \printnames or \printlist. It
is intended for use in list formatting directives and does not hold a meaningful
value when used anywhere else.

\currentfield The name of the field currently being processed by \printfield. This information
is only available locally in field formatting directives.

\currentlist The name of the literal list currently being processed by \printlist. This infor-
mation is only available locally in list formatting directives.

\currentname The name of the name list currently being processed by \printnames. This infor-
mation is only available locally in name formatting directives.

4.10.6 General Purpose Hooks

\AtBeginBibliography{〈code〉}

Appends the 〈code〉 to an internal hook executed at the beginning of the bibliogra-
phy. The 〈code〉 is executed at the beginning of the list of references, immediately
after the 〈begin code〉 of \defbibenvironment. This command may only be used
in the preamble.

\AtBeginShorthands{〈code〉}

Appends the 〈code〉 to an internal hook executed at the beginning of the list of
shorthands. The 〈code〉 is executed at the beginning of the list of shorthands, im-
mediately after the 〈begin code〉 of \defbibenvironment. This command may only
be used in the preamble.

\AtEveryBibitem{〈code〉}

Appends the 〈code〉 to an internal hook executed at the beginning of every item

191

in the bibliography. The 〈code〉 is executed immediately after the 〈item code〉 of
\defbibenvironment. The bibliographic data of the respective entry is available
at this point. This command may only be used in the preamble.

\AtEveryLositem{〈code〉}

Appends the 〈code〉 to an internal hook executed at the beginning of every item in
the list of shorthands. The 〈code〉 is executed immediately after the 〈item code〉 of
\defbibenvironment. The bibliographic data of the respective entry is available
at this point. This command may only be used in the preamble.

\AtEveryCite{〈code〉}

Appends the 〈code〉 to an internal hook executed at the beginning of every citation
command. The 〈code〉 is executed immediately before the 〈precode〉 of the com-
mand (see § 4.3.1). No bibliographic data is available at this point. This command
may only be used in the preamble.

\AtEveryCitekey{〈code〉}

Appends the 〈code〉 to an internal hook executed once for every entry key passed
to a citation command. The 〈code〉 is executed immediately before the 〈loopcode〉
of the command (see § 4.3.1). The bibliographic data of the respective entry is
available at this point. This command may only be used in the preamble.

\AtNextCite{〈code〉}

Similar to \AtEveryCite but only aVecting the next citation command. The inter-
nal hook is cleared after being executed once. This command may be used in the
document body.

\AtNextCitekey{〈code〉}

Similar to \AtEveryCitekey but only aVecting the next entry key. The internal
hook is cleared after being executed once. This command may be used in the
document body.

\AtDataInput[〈entrytype〉]{〈code〉}

Appends the 〈code〉 to an internal hook executed once for every entry as the bibli-
ographic data is imported from the bbl file. The 〈entrytype〉 is the entry type the
〈code〉 applies to. If it applies to all entry types, omit the optional argument. The
〈code〉 is executed immediately after the entry has been imported. This command
may only be used in the preamble. Note that, if there are any refsection environ-
ments in the document and an entry is cited in more than one of them, the 〈code〉
may be executed multiple times for an entry. The refsection counter holds the
number of the respective reference section while the data is imported.

4.11 Hints and Caveats

This section provides some additional hints concerning the author interface of this
package. It also addresses common problems and potential misconceptions.

192

4.11.1 Entry Sets

Entry sets have already been introduced in § 3.10.5. This section discusses how to
process entry sets in a bibliography style. From the perspective of the driver, there
is no diVerence between static and dynamic entry sets. Both types are handled in
the same way. You will normally use the \entryset command from § 4.4.1 to loop
over all set members (in the order in which they are listed in the entryset field of
the @set entry, or in the order in which they were passed to \defbibentryset, re-
spectively) and append \finentry at the end. That’s it. The formatting is handled
by the drivers for the entry types of the individual set members:

\DeclareBibliographyDriver{set}{%
\entryset{}{}%
\finentry}

You may have noticed that the numeric styles which ship with this package support
subdivided entry sets, i. e., the members of the set are marked with a letter or some
other marker such that citations may either refer to the entire set or to a specific
set member. The markers are generated as follows by the bibliography style:

\DeclareBibliographyDriver{set}{%
\entryset

{\printfield{entrysetcount}%
\setunit*{\addnbspace}}
{}%

\finentry}

The entrysetcount field holds an integer indicating the position of a set member
in the entry set. The conversion of this number to a letter or some other marker
is handled by the formatting directive of the entrysetcount field. All the driver
needs to do is print the field and add some white space (or start a new line). Print-
ing the markers in citations works in a similar way. Where a numeric style normally
says \printfield{labelnumber}, you simply append the entrysetcount field:

\printfield{labelnumber}\printfield{entrysetcount}

Since this field is only defined when processing citations referring to a set member,
there is no need to add any additional tests.

4.11.2 Electronic Publishing Information

The standard styles feature dedicated support for arXiv references. Support for
other resources is easily added. The standard styles handle the eprint field as
follows:

\iffieldundef{eprinttype}
{\printfield{eprint}}
{\printfield[eprint:\strfield{eprinttype}]{eprint}}

If an eprinttype field is available, the above code tries to use the field format
eprint:〈eprinttype〉. If this format is undefined, \printfield automatically falls
back to the field format eprint. There are two predefined field formats, the type-
specific format eprint:arxiv and the fallback format eprint:

193

\DeclareFieldFormat{eprint}{...}
\DeclareFieldFormat{eprint:arxiv}{...}

In other words, adding support for additional resources is as easy as defining a
field format named eprint:〈resource〉 where 〈resource〉 is an identifier to be used
in the eprinttype field.

4.11.3 External Abstracts and Annotations

External abstracts and annotations have been discussed in § 3.10.7. This section
provides some more background for style authors. The standard styles use the
following macros (from biblatex.def) to handle abstracts and annotations:

\newbibmacro*{annotation}{%
\iffieldundef{annotation}

{\printfile[annotation]{\bibannotationprefix\thefield{entrykey}.tex}}%
{\printfield{annotation}}}

\newcommand*{\bibannotationprefix}{bibannotation-}

\newbibmacro*{abstract}{%
\iffieldundef{abstract}

{\printfile[abstract]{\bibabstractprefix\thefield{entrykey}.tex}}%
{\printfield{abstract}}}

\newcommand*{\bibabstractprefix}{bibabstract-}

If the abstract/annotation field is undefined, the above code tries to load the
abstracts/annotations from an external file. The \printfile commands also incor-
porate file name prefixes which may be redefined by users. Note that you must en-
able \printfile explicitly by setting the loadfiles package option from § 3.1.2.1.
This feature is disabled by default for performance reasons.

4.11.4 Name Disambiguation Biber only

The uniquename and uniquelist options introduced in § 3.1.2.3 support various
modes of operation. This section explains the diVerences between these modes
by way of example. The uniquename option disambiguates individual names in
the labelname list. The uniquelist option disambiguates the labelname list if it
has become ambiguous after maxnames/minnames truncation. You can use either
option stand-alone or combine both.

4.11.4.1 Individual Names (uniquename)

Let’s start oV with some uniquename examples. Consider the following data:

John Doe 2008
Edward Doe 2008
John Smith 2008
Jane Smith 2008

Let’s assume we’re using an author-year style and set uniquename=false. In this
case, we would get the following citations:

Doe 2008a
Doe 2008b

194

Smith 2008a
Smith 2008b

Since the last names are ambiguous and all works have been published in the same
year, an extra letter is appended to the year to disambiguate the citations. Many
style guides, however, mandate that the extra letter be used to disambiguate works
by the same authors only, not works by diVerent authors with the same last name.
In order to disambiguate the author’s last name, you are expected to add additional
parts of the name, either as initials or in full. This requirement is addressed by the
uniquename option. Here are the same citations with uniquename=init:

J. Doe 2008
E. Doe 2008
Smith 2008a
Smith 2008b

uniquename=init restricts name disambiguation to initials. Since ‘J. Smith’ would
still be ambiguous, no additional name parts are added for the ‘Smiths’. With
uniquename=full, names are printed in full where required:

J. Doe 2008
E. Doe 2008
John Smith 2008
Jane Smith 2008

In order to illustrate the diVerence between uniquename=init/full and allinit/
allfull, we need to introduce the notion of a ‘visible’ name. In the following, ‘visi-
ble’ names are all names at a position before the maxnames/minnames/uniquelist
truncation point. For example, given this data:

William Jones/Edward Doe/Jane Smith
John Doe
John Smith

and maxnames=1, minnames=1, uniquename=init/full, we would get the follow-
ing names in citations:

Jones et al.
Doe
Smith

When disambiguating names, uniquename=init/full only consider the visible
names. Since all visible last names are distinct in this example, no further name
parts are added. Let’s compare that to the output of uniquename=allinit:

Jones et al.
J. Doe
Smith

allinit considers all names in all labelname lists, including those which are
hidden and replaced by ‘et al.’ as the list is truncated. In this example, ‘John Doe’
is disambiguated from ‘Edward Doe’. Since the ambiguity of the two ‘Smiths’ can’t
be resolved by adding initials, no initials are added in this case. Now let’s compare

195

that to the output of uniquename=allfull which also disambiguates ‘John Smith’
from ‘Jane Smith’:

Jones et al.
J. Doe
John Smith

The options uniquename=mininit/minfull are similar to init/full in that they
only consider visible names, but they perform minimal disambiguation. That is,
they will disambiguate individual names only if they occur in identical lists of last
names. Consider the following data:

John Doe/William Jones
Edward Doe/William Jones
John Smith/William Edwards
Edward Smith/Allan Johnson

With uniquename=init/full, we would get:

J. Doe and Jones
E. Doe and Jones
J. Smith and Edwards
E. Smith and Johnson

With uniquename=mininit/minfull:

J. Doe and Jones
E. Doe and Jones
Smith and Edwards
Smith and Johnson

The ‘Smiths’ are not disambiguated because the visible name lists are not ambigu-
ous and the mininit/minfull options serve to disambiguate names occurring in
identical last name lists only. Another way of looking at this is that they globally
disambiguate last name lists. When it comes to ambiguous lists, note that a trun-
cated list is considered to be distinct from an untruncated one even if the visible
names are identical. For example, consider the following data:

John Doe/William Jones
Edward Doe

With maxnames=1, uniquename=init/full, we would get:

J. Doe et al.
E. Doe

With uniquename=mininit/minfull:

Doe et al.
Doe

Because the lists diVer in the ‘et al.’, the names are not disambiguated.

196

4.11.4.2 Lists of Names (uniquelist)

Ambiguity is also an issue with name lists. If the labelname list is truncated by the
maxnames/minnames options, it may become ambiguous. This type of ambiguity is
addressed by the uniquelist option. Consider the following data:

Doe/Jones/Smith 2005
Smith/Johnson/Doe 2005
Smith/Doe/Edwards 2005
Smith/Doe/Jones 2005

Many author-year styles truncate long author/editor lists in citations. For example,
with maxnames=1 we would get:

Doe et al. 2005
Smith et al. 2005a
Smith et al. 2005b
Smith et al. 2005c

Since the authors are ambiguous after truncation, the extra letter is added to the
year to ensure unique citations. Here again, many style guides mandate that the
extra letter be used to disambiguate works by the same authors only. In order to
disambiguate author lists, you are usually required to add more names, exceeding
the maxnames/minnames truncation point. The uniquelist feature addresses this
requirement. With uniquelist=true, we would get:

Doe et al. 2005
Smith, Johnson et al. 2005
Smith, Doe and Edwards 2005
Smith, Doe and Jones 2005

The uniquelist option overrides maxnames/minnames on a per-entry basis. Essen-
tially, what happens is that the ‘et al.’ part of the citation is expanded to the point
of no ambiguity – but no further than that. uniquelist may also be combined
with uniquename. Consider the following data:

John Doe/Allan Johnson/William Jones 2009
John Doe/Edward Johnson/William Jones 2009
John Doe/Jane Smith/William Jones 2009
John Doe/John Smith/William Jones 2009
John Doe/John Edwards/William Jones 2009
John Doe/John Edwards/Jack Johnson 2009

With maxnames=1:

Doe et al. 2009a
Doe et al. 2009b
Doe et al. 2009c
Doe et al. 2009d
Doe et al. 2009e
Doe et al. 2009f

With maxnames=1, uniquename=full, uniquelist=true:

197

Doe, A. Johnson et al. 2009
Doe, E. Johnson et al. 2009
Doe, Jane Smith et al. 2009
Doe, John Smith et al. 2009
Doe, Edwards and Jones 2009
Doe, Edwards and Johnson 2009

With uniquelist=minyear, list disambiguation only happens if the visible list is
identical to another visible list with the same labelyear. This is useful for author-
year styles which only require that the citation as a whole be unique, but do not
guarantee unambiguous authorship information in citations. This mode is concep-
tually related to uniquename=mininit/minfull. Consider this example:

Smith/Jones 2000
Smith/Johnson 2001

With maxnames=1 and uniquelist=true, we would get:

Smith and Jones 2000
Smith and Johnson 2001

With uniquelist=minyear:

Smith et al. 2000
Smith et al. 2001

With uniquelist=minyear, it is not clear that the authors are diVerent for the two
works but the citations as a whole are still unambiguous since the year is diVerent.
In contrast to that, uniquelist=true disambiguates the authorship even if this
information is not required to uniquely locate the works in the bibliography. Let’s
consider another example:

Vogel/Beast/Garble/Rook 2000
Vogel/Beast/Tremble/Bite 2000
Vogel/Beast/Acid/Squeeze 2001

With maxnames=3, minnames=1, uniquelist=true, we would get:

Vogel, Beast, Garble et al. 2000
Vogel, Beast, Tremble et al. 2000
Vogel, Beast, Acid et al. 2001

With uniquelist=minyear:

Vogel, Beast, Garble et al. 2000
Vogel, Beast, Tremble et al. 2000
Vogel et al. 2001

In the last citation, uniquelist=minyear does not override maxnames/minnames
as the citation does not need disambiguating from the other two because the year
is diVerent.

198

4.11.5 Trackers in Floats and TOC/LOT/LOF

If a citation is given in a float (typically in the caption of a figure or table), schol-
arly back references like ‘ibidem’ or back references based on the page tracker get
ambiguous because floats are objects which are (physically and logically) placed
outside the flow of text, hence the logic of such references applies poorly to them.
To avoid any such ambiguities, the citation and page trackers are temporarily dis-
abled in all floats. In addition to that, these trackers plus the back reference tracker
(backref) are temporarily disabled in the table of contents, the list of figures, and
the list of tables.

4.11.6 Mixing Programming Interfaces

The biblatex package provides two main programming interfaces for style au-
thors. The \DeclareBibliographyDriver command, which defines a handler for
an entry type, is typically used in bbx files. \DeclareCiteCommand, which defines
a new citation command, is typically used in cbx files. However, in some cases it
is convenient to mix these two interfaces. For example, the \fullcite command
prints a verbose citation similar to the full bibliography entry. It is essentially de-
fined as follows:

\DeclareCiteCommand{\fullcite}
{...}
{\usedriver{...}{\thefield{entrytype}}}
{...}
{...}

As you can see, the core code which prints the citations simply executes the bib-
liography driver defined with \DeclareBibliographyDriver for the type of the
current entry. When writing a citation style for a verbose citation scheme, it is
often convenient to use the following structure:

\ProvidesFile{example.cbx}[2007/06/09 v1.0 biblatex citation style]

\DeclareCiteCommand{\cite}
{...}
{\usedriver{...}{cite:\thefield{entrytype}}}
{...}
{...}

\DeclareBibliographyDriver{cite:article}{...}
\DeclareBibliographyDriver{cite:book}{...}
\DeclareBibliographyDriver{cite:inbook}{...}
...

Another case in which mixing interfaces is helpful are styles using cross-references
within the bibliography. For example, when printing an @incollection entry, the
data inherited from the @collection parent entry would be replaced by a short
pointer to the respective parent entry:

[1] Audrey Author: Title of article. In: [2], pp. 134–165.

199

[2] Edward Editor, ed.: Title of collection. Publisher: Location, 1995.

One way to implement such cross-references within the bibliography is to think of
them as citations which use the value of the xref or crossref field as the entry
key. Here is an example:

\ProvidesFile{example.bbx}[2007/06/09 v1.0 biblatex bibliography style]

\DeclareCiteCommand{\bbx@xref}
{}
{...}% code for cross-references
{}
{}

\DeclareBibliographyDriver{incollection}{%
...
\iffieldundef{xref}
{...}% code if no cross-reference
{\bbx@xref{\thefield{xref}}}%

...
}

When defining \bbx@xref, the 〈precode〉, 〈postcode〉, and 〈sepcode〉 arguments of
\DeclareCiteCommand are left empty in the above example because they will not
be used anyway. The cross-reference is printed by the 〈loopcode〉 of \bbx@xref. For
further details on the xref field, refer to § 2.2.3 and to the hints in § 2.4.1. Also
see the \iffieldxref, \iflistxref, and \ifnamexref tests in § 4.6.2. The above
could also be implemented using the \entrydata command from § 4.4.1:

\ProvidesFile{example.bbx}[2007/06/09 v1.0 biblatex bibliography style]

\DeclareBibliographyDriver{incollection}{%
...
\iffieldundef{xref}
{...}% code if no cross-reference
{\entrydata{\thefield{xref}}{%
% code for cross-references
...

}}%
...

}

4.11.7 Using the Punctuation Tracker

4.11.7.1 The Basics

There is one fundamental principle style authors should keep in mind when design-
ing a bibligraphy driver: block and unit punctuation is handled asynchronously.
This is best explained by way of example. Consider the following code snippet:

\printfield{title}%

200

\newunit
\printfield{edition}%
\newunit
\printfield{note}%

If there is no edition field, this piece of code will not print:

Title. . Note

but rather:

Title. Note

because the unit punctuation tracker works asynchronously. \newunit will not
print the unit punctuation immediately. It merely records a unit boundary and
puts \newunitpunct on the punctuation buVer. This buVer will be handled by sub-
sequent \printfield, \printlist, or similar commands but only if the respective
field or list is defined. Commands like \printfield will consider three factors
prior to inserting any block or unit punctuation:

• Has a new unit/block been requested at all?
= Is there any preceding \newunit or \newblock command?

• Did the preceding commands print anything?
= Is there any preceding \printfield or similar command?
= Did this command actually print anything?

• Are we about to print anything now?
= Is the field/list to be processed now defined?

Block and unit punctuation will only be inserted if all of these conditions apply.
Let’s reconsider the above example:

\printfield{title}%
\newunit
\printfield{edition}%
\newunit
\printfield{note}%

Here’s what happens if the edition field is undefined. The first \printfield com-
mand prints the title and sets an internal ‘new text’ flag. The first \newunit sets
an interal ‘new unit’ flag. No punctuation has been printed at this point. The sec-
ond \printfield does nothing because the edition field is undefined. The next
\newunit command sets the interal flag ‘new unit’ again. Still no punctuation has
been printed. The third \printfield checks if the note field is defined. If so, it
looks at the ‘new text’ and ‘new unit’ flags. If both are set, it inserts the punctua-
tion buVer before printing the note. It then clears the ‘new unit’ flag and sets the
‘new text’ flag again.

This may all sound more complicated than it is. In practice, it means that it
is possible to write large parts of a bibliography driver in a sequential way. The
advantage of this approach becomes obvious when trying to write the above code
without using the punctuation tracker. Such an attempt will lead to a rather con-

201

voluted set of \iffieldundef tests required to check for all possible field combi-
nations (note that the code below handles three fields; a typical driver may need
to cater for some two dozen fields):

\iffieldundef{title}%
{\iffieldundef{edition}

{\printfield{note}}
{\printfield{edition}%
\iffieldundef{note}%

{}
{. \printfield{note}}}}

{\printfield{title}%
\iffieldundef{edition}

{}
{. \printfield{edition}}%

\iffieldundef{note}
{}
{. \printfield{note}}}%

4.11.7.2 Common Mistakes

It is a fairly common misconception to think of the unit punctuation as some-
thing that is handled synchronously. This typically causes problems if the driver
includes any literal text. Consider this erroneous code snippet which will generate
misplaced unit punctuation:

\printfield{title}%
\newunit
(\printfield{series} \printfield{number})%

This code will yield the following result:

Title (. Series Number)

Here’s what happens. The first \printfield prints the title. Then \newunit marks
a unit boundary but does not print anything. The unit punctuation is printed
by the next \printfield command. That’s the asynchronous part mentioned be-
fore. However, the opening parenthesis is printed immediately before the next
\printfield inserts the unit punctuation, leading to a misplaced period. When
inserting any literal text such as parentheses (including those printed by com-
mands such as \bibopenparen and \mkbibparens), always wrap the text in a
\printtext command. For the punctuation tracker to work as expected, it needs
to know about all literal text inserted by a driver. This is what \printtext is all
about. \printtext interfaces with the punctuation tracker and ensures that the
punctuation buVer is inserted before the literal text gets printed. It also sets the
internal ‘new text’ flag. Note there is in fact a third piece of literal text in this ex-
ample: the space after \printfield{series}. In the corrected example, we will
use the punctuation tracker to handle that space.

\printfield{title}%
\newunit

202

\printtext{(}%
\printfield{series}%
\setunit*{\addspace}%
\printfield{number}%
\printtext{)}%

While the above code will work as expected, the recommended way to handle
parentheses, quotes, and other things which enclose more than one field, is to
define a field format:

\DeclareFieldFormat{parens}{\mkbibparens{#1}}

Field formats may be used with both \printfield and \printtext, hence we can
use them to enclose several fields in a single pair of parentheses:

\printtext[parens]{%
\printfield{series}%
\setunit*{\addspace}%
\printfield{number}%

}%

We still need to handle cases in which there is no series information at all, so let’s
improve the code some more:

\iffieldundef{series}
{}
{\printtext[parens]{%

\printfield{series}%
\setunit*{\addspace}%
\printfield{number}}}%

One final hint: localization strings are not literal text as far as the punctuation
tracker is concerned. Since \bibstring and similar commands interface with the
punctuation tracker, there is no need to wrap them in a \printtext command.

4.11.7.3 Advanced Usage

The punctuation tracker may also be used to handle more complex scenarios. For
example, suppose that we want the fields location, publisher, and year to be
rendered in one of the following formats, depending on the available data:

...text. Location: Publisher, Year. Text...

...text. Location: Publisher. Text...

...text. Location: Year. Text...

...text. Publisher, Year. Text...

...text. Location. Text...

...text. Publisher. Text...

...text. Year. Text...

This problem can be solved with a rather convoluted set of \iflistundef and
\iffieldundef tests which check for all possible field combinations:

\iflistundef{location}
{\iflistundef{publisher}

{\printfield{year}}

203

{\printlist{publisher}%
\iffieldundef{year}

{}
{, \printfield{year}}}}

{\printlist{location}%
\iflistundef{publisher}%

{\iffieldundef{year}
{}
{: \printfield{year}}}

{: \printlist{publisher}%
\iffieldundef{year}

{}
{, \printfield{year}}}}%

The above could be written in a somewhat more readable way by employing
\ifthenelse and the boolean operators discussed in § 4.6.3. The approach would
still be essentially the same. However, it may also be written sequentially:

\newunit
\printlist{location}%
\setunit*{\addcolon\space}%
\printlist{publisher}%
\setunit*{\addcomma\space}%
\printfield{year}%
\newunit

In practice, you will often use a combination of explicit tests and the implicit tests
performed by the punctuation tracker. For example, consider the following format
(note the punctuation after the location if there is no publisher):

...text. Location: Publisher, Year. Text...

...text. Location: Publisher. Text...

...text. Location, Year. Text...

...text. Publisher, Year. Text...

...text. Location. Text...

...text. Publisher. Text...

...text. Year. Text...

This can be handled by the following code:

\newunit
\printlist{location}%
\iflistundef{publisher}

{\setunit*{\addcomma\space}}
{\setunit*{\addcolon\space}}%

\printlist{publisher}%
\setunit*{\addcomma\space}%
\printfield{year}%
\newunit

Since the punctuation after the location is special if there is no publisher, we need
one \iflistundef test to catch this case. Everything else is handled by the punc-
tuation tracker.

204

4.11.8 Custom Localization Modules

Style guides may include provisions as to how strings like ‘edition’ should be ab-
breviated or they may mandate certain fixed expressions. For example, the mla

style guide requires authors to use the term ‘Works Cited’ rather than ‘Bibliogra-
phy’ or ‘References’ in the heading of the bibliography. Localization commands
such as \DefineBibliographyStrings from § 3.7 may indeed be used in cbx and
bbx files to handle such cases. However, overloading style files with translations is
rather inconvenient. This is where \DeclareLanguageMapping from § 4.9.1 comes
into play. This command maps an lbx file with alternative translations to a babel
language. For example, you could create a file named french-humanities.lbx
which provides French translations adapted for use in the humanities and map it
to the babel language french in the preamble or in the configuration file:

\DeclareLanguageMapping{french}{french-humanities}

If the document language is set to french, french-humanities.lbx will replace
french.lbx. Coming back to the mla example mentioned above, an mla style
may come with an american-mla.lbx file to provide strings which comply with
the mla style guide. It would declare the following mapping in the cbx and/or bbx
file:

\DeclareLanguageMapping{american}{american-mla}

Since the alternative lbx file can inherit strings from the standard american.lbx
module, american-mla.lbx may be as short as this:

\ProvidesFile{american-mla.lbx}[2008/10/01 v1.0 biblatex localization]
\InheritBibliographyExtras{american}
\DeclareBibliographyStrings{%

inherit = {american},
bibliography = {{Works Cited}{Works Cited}},
references = {{Works Cited}{Works Cited}},

}
\endinput

Alternative lbx files must ensure that the localization module is complete. They
will typically do so by inheriting data from the corresponding standard module. If
the language american is mapped to american-mla.lbx, biblatex will not load
american.lbx unless this module is requested explicitly. In the above example,
inheriting ‘strings’ and ‘extras’ will cause biblatex to load american.lbx before
applying the modifications in american-mla.lbx.

Note that \DeclareLanguageMapping is not intended to handle language vari-
ants (e. g., American English vs. British English) or babel language aliases (e. g.,
USenglish vs. american). For example, babel oVers the USenglish option which
is similar to american. Therefore, biblatex ships with an USenglish.lbx file
which simply inherits all data from american.lbx (which in turn gets the ‘strings’
from english.lbx). In other words, the mapping of language variants and babel
language aliases happens on the file level, the point being that biblatex’s lan-
guage support can be extended simply by adding additional lbx files. There is

205

no need for centralized mapping. If you need support for, say, Portuguese (babel:
portuges), you create a file named portuges.lbx. If babel oVered an alias named
brasil, you would create brasil.lbx and inherit the data from portuges.lbx. In
contrast to that, the point of \DeclareLanguageMapping is handling stylistic vari-
ants like ‘humanities vs. natural sciences’ or ‘mla vs. apa’ etc. which will typically
be built on top of existing lbx files.

4.11.9 Grouping

In a citation or bibliography style, you may need to set flags or store certain values
for later use. In this case, it is crucial to understand the basic grouping structure
imposed by this package. As a rule of thumb, you are working in a large group
whenever author commands such as those discussed in § 4.6 are available because
the author interface of this package is only enabled locally. If any bibliographic
data is available, there is at least one additional group. Here are some general
rules:

• The entire list of references printed by \printbibliography and similar com-
mands is processed in a group. Each entry in the list is processed in an addi-
tional group which encloses the 〈item code〉 of \defbibenvironment as well as
all driver code.

• The entire list of shorthands printed by \printshorthands is processed in a
group. Each entry in the list is processed in an additional group which encloses
the 〈item code〉 of \defbibenvironment as well as all driver code.

• All citation commands defined with \DeclareCiteCommand are processed in a
group holding the complete citation code consisting of the 〈precode〉, 〈sepcode〉,
〈loopcode〉, and 〈postcode〉 arguments. The 〈loopcode〉 is enclosed in an addi-
tional group every time it is executed. If any 〈wrapper〉 code has been specified,
the entire unit consisting of the wrapper code and the citation code is wrapped
in an additional group.

• In addition to the grouping imposed by all backend commands defined with
\DeclareCiteCommand, all ‘autocite’ and ‘multicite’ definitions imply an addi-
tional group.

• \printfile, \printtext, \printfield, \printlist, and \printnames form
groups. This implies that all formatting directives will be processed within a
group of their own.

• All lbx files are loaded and processed in a group. If an lbx file contains any
code which is not part of \DeclareBibliographyExtras, the definitions must
be global.

Note that using \aftergroup in citation and bibliography styles is unreliable be-
cause the precise number of groups employed in a certain context may change in
future versions of this package. If the above list states that something is processed
in a group, this means that there is at least one group. There may also be several
nested ones.

206

4.11.10 Namespaces

In order to minimize the risk of name clashes, LaTeX packages typically prefix the
names of internal macros with a short string specific to the package. For example,
if the foobar package requires a macro for internal use, it would typically be
called \FB@macro or \foo@macro rather than \macro or \@macro. Here is a list of
the prefixes used or recommended by biblatex:

blx All macros with names like \blx@name are strictly reserved for internal use. This
also applies to counter names, length registers, boolean switches, and so on. These
macros may be altered in backwards-incompatible ways, they may be renamed or
even removed at any time without further notice. Such changes will not even be
mentioned in the revision history or the release notes. In short: never use any
macros with the string blx in their name in any styles.

abx Macros prefixed with abx are also internal macros but they are fairly stable. It is
always preferable to use the facilities provided by the oYcial author interface, but
there may be cases in which using an abx macro is convenient.

bbx This is the recommended prefix for internal macros defined in bibliography styles.

cbx This is the recommended prefix for internal macros defined in citation styles.

lbx This is the recommended base prefix for internal macros defined in localization
modules. The localization module should add a second prefix to specify the lan-
guage. For example, an internal macro defined by the Spanish localization module
would be named \lbx@es@macro.

Appendix

A Default crossref Setup

The following table shows the Biber cross-referencing rules defined by default.
Please refer to §§ 2.4.1 and 4.5.3 for explanation.

Types Fields

Source Target Source Target

* * crossref
xref
entryset
entrysubtype
execute
label
options
presort
related
relatedstring
relatedtype
shorthand
shorthandintro
sortkey

–
–
–
–
–
–
–
–
–
–
–
–
–
–

207

Types Fields

Source Target Source Target

mvbook, book inbook, bookinbook, suppbook author
author

author
bookauthor

mvbook book, inbook, bookinbook, suppbook title
subtitle
titleaddon
shorttitle
sorttitle
indextitle
indexsorttitle

maintitle
mainsubtitle
maintitleaddon
–
–
–
–

mvcollection,
mvreference

collection, reference,
incollection, inreference,
suppcollection

title
subtitle
titleaddon
shorttitle
sorttitle
indextitle
indexsorttitle

maintitle
mainsubtitle
maintitleaddon
–
–
–
–

mvproceedings proceedings, inproceedings title
subtitle
titleaddon
shorttitle
sorttitle
indextitle
indexsorttitle

maintitle
mainsubtitle
maintitleaddon
–
–
–
–

book inbook, bookinbook, suppbook title
subtitle
titleaddon
shorttitle
sorttitle
indextitle
indexsorttitle

booktitle
booksubtitle
booktitleaddon
–
–
–
–

collection,
reference

incollection, inreference,
suppcollection

title
subtitle
titleaddon
shorttitle
sorttitle
indextitle
indexsorttitle

booktitle
booksubtitle
booktitleaddon
–
–
–
–

proceedings inproceedings title
subtitle
titleaddon
shorttitle
sorttitle
indextitle
indexsorttitle

booktitle
booksubtitle
booktitleaddon
–
–
–
–

periodical article, suppperiodical title
subtitle
shorttitle
sorttitle
indextitle
indexsorttitle

journaltitle
journalsubtitle
–
–
–
–

208

B Default Sorting Schemes

B1 Alphabetic Schemes 1

The following table shows the standard alphabetic sorting schemes defined by
default. Please refer to § 3.4 for explanation.

Option Sorting scheme

nty presort
↪→mm

→sortname
↪→author
↪→editor
↪→translator
↪→sorttitle
↪→title

→sorttitle
↪→title

→sortyear
↪→year

→volume
↪→0000

nyt presort
↪→mm

→sortname
↪→author
↪→editor
↪→translator
↪→sorttitle
↪→title

→sortyear
↪→year

→sorttitle
↪→title

→volume
↪→0000

nyvt presort
↪→mm

→sortname
↪→author
↪→editor
↪→translator
↪→sorttitle
↪→title

→sortyear
↪→year

→volume
↪→0000

→sorttitle
↪→title

all presort
↪→mm

→sortkey

B2 Alphabetic Schemes 2

The following table shows the alphabetic sorting schemes for alphabetic styles
defined by default. Please refer to § 3.4 for explanation.

Option Sorting scheme

anyt presort
↪→mm

→labelalpha →sortname
↪→author
↪→editor
↪→translator
↪→sorttitle
↪→title

→sortyear
↪→year

→sorttitle
↪→title

→volume
↪→0000

anyvt presort
↪→mm

→labelalpha →sortname
↪→author
↪→editor
↪→translator
↪→sorttitle
↪→title

→sortyear
↪→year

→volume
↪→0000

→sorttitle
↪→title

all presort
↪→mm

→labelalpha →sortkey

209

B3 Chronological Schemes

The following table shows the chronological sorting schemes defined by default.
Please refer to § 3.4 for explanation.

Option Sorting scheme

ynt presort
↪→mm

→sortyear
↪→year
↪→9999

→sortname
↪→author
↪→editor
↪→translator
↪→sorttitle
↪→title

→sorttitle
↪→title

ydnt presort
↪→mm

→sortyear (desc.)
↪→year (desc.)
↪→9999

→sortname
↪→author
↪→editor
↪→translator
↪→sorttitle
↪→title

→sorttitle
↪→title

all presort
↪→mm

→sortkey

C Revision History

This revision history is a list of changes relevant to users of this package. Changes
of a more technical nature which do not aVect the user interface or the behavior
of the package are not included in the list. If an entry in the revision history states
that a feature has been improved or extended, this indicates a modification which
either does not aVect the syntax and behavior of the package or is syntactically
backwards compatible (such as the addition of an optional argument to an existing
command). Entries stating that a feature has been modified, renamed, or removed
demand attention. They indicate a modification which may require changes to
existing styles or documents in some, hopefully rare, cases. The numbers on the
right indicate the relevant section of this manual.

1.6 2011-07-29

Added special field sortshorthand . 2.2.3 Biber only

Revised options maxnames/minnames . 3.1.2.1
Options maxcitenames/mincitenames now supported by backend 3.1.2.1 Biber only

Options maxbibnames/minbibnames now supported by backend 3.1.2.1 Biber only

Added options maxalphanames/minalphanames 3.1.2.3 Biber only

Removed local options maxnames/minnames from \printbibliography . 3.5.2
Removed local options maxitems/minitems from \printbibliography . 3.5.2
Removed local options maxnames/minnames from \bibbysection 3.5.2
Removed local options maxitems/minitems from \bibbysection 3.5.2
Removed local options maxnames/minnames from \bibbysegment 3.5.2
Removed local options maxitems/minitems from \bibbysegment 3.5.2
Removed local options maxnames/minnames from \bibbycategory . . . 3.5.2
Removed local options maxitems/minitems from \bibbycategory . . . 3.5.2

210

Removed local options maxnames/minnames from \printshorthands . . 3.5.3
Removed local options maxitems/minitems from \printshorthands . . 3.5.3
Added special field format volcitevolume 3.6.6
Added special field format volcitepages 3.6.6
Added special field hash . 4.2.4.1 Biber only

Added \mkcomprange . 4.6.4
Added \mkfirstpage . 4.6.4
Removed \mkpagefirst . 4.6.4
Fixed some bugs

1.5a 2011-06-17

Fixed some bugs

1.5 2011-06-08

Added option uniquename=mininit/minfull 3.1.2.3 Biber only

Added option uniquelist=minyear . 3.1.2.3 Biber only

Updated documentation of uniquename counter 4.6.2 Biber only

Updated documentation of uniquelist counter 4.6.2 Biber only

Expanded documentation for uniquename/uniquelist options 4.11.4 Biber only

Added editorial role reviser . 2.3.6
Added localization keys reviser, revisers, byreviser 4.9.2
Added bibliography heading none . 3.5.7
Fixed some memoir compatibility issues

1.4c 2011-05-12

Fixed some bugs

1.4b 2011-04-12

Fixed some bugs

1.4a 2011-04-06

Enable uniquename and uniquelist in all authortitle styles 3.3.1
Enable uniquename and uniquelist in all authoryear styles 3.3.1
Fixed some bugs

1.4 2011-03-31

Added package option uniquelist . 3.1.2.3 Biber only

Added special counter uniquelist . 4.6.2 Biber only

Revised and improved package option uniquename 3.1.2.3 Biber only

Revised and improved special counter uniquename 4.6.2 Biber only

Added \bibnamedelimi . 3.8.1 Biber only

Added \bibindexnamedelima . 3.8.1
Added \bibindexnamedelimb . 3.8.1
Added \bibindexnamedelimc . 3.8.1
Added \bibindexnamedelimd . 3.8.1
Added \bibindexnamedelimi . 3.8.1

211

Added \bibindexinitperiod . 3.8.1
Added \bibindexinitdelim . 3.8.1
Added \bibindexinithyphendelim . 3.8.1
Fixed conflict with some ams classes

1.3a 2011-03-18

Fixed some bugs

1.3 2011-03-14

Support @thesis with isbn . 2.1.1
Updated terseinits option . 3.1.2.1
Allow macros in argument to \addbibresource and friends 3.5.1
Allow macros in argument to \bibliography 3.5.1
Introducing experimental support for Zotero rdf/xml 3.5.1 Biber only

Introducing experimental support for EndNote xml 3.5.1 Biber only

Added option citecounter . 3.1.2.3
Added citecounter . 4.6.2
Added \smartcite and \Smartcite . 3.6.2
Added \smartcites and \Smartcites 3.6.3
Added \svolcite and \Svolcite . 3.6.6
Added \bibnamedelima . 3.8.1 Biber only

Added \bibnamedelimb . 3.8.1 Biber only

Added \bibnamedelimc . 3.8.1
Added \bibnamedelimd . 3.8.1
Added \bibinitperiod . 3.8.1 Biber only

Added \bibinitdelim . 3.8.1 Biber only

Added \bibinithyphendelim . 3.8.1 Biber only

Expanded documentation . 3.11.4
Added 〈position〉 parameter f to \DeclareAutoCiteCommand 4.3.1

1.2a 2011-02-13

Fix in \mkbibmonth . 4.10.4

1.2 2011-02-12

Added entry type @mvbook . 2.1.1
Added entry type @mvcollection . 2.1.1
Added entry type @mvproceedings . 2.1.1
Added entry type @mvreference . 2.1.1
Introducing remote resources . 3.5.1 Biber only

Introducing experimental ris support 3.5.1 Biber only

Added \addbibresource . 3.5.1
\bibliography now deprecated . 3.5.1
\bibliography* replaced by \addglobalbib 3.5.1
Added \addsectionbib . 3.5.1
Updated and expanded documentation 2.4.1
Introducing smart crossref data inheritance 2.4.1.2 Biber only

212

Introducing crossref configuration interface 4.5.3 Biber only

Added \DefaultInheritance . 4.5.3 Biber only

Added \DeclareDataInheritance . 4.5.3 Biber only

Added \ResetDataInheritance . 4.5.3 Biber only

Added \ifkeyword . 4.6.2
Added \ifentrykeyword . 4.6.2
Added \ifcategory . 4.6.2
Added \ifentrycategory . 4.6.2
Added \ifdriver . 4.6.2
Added \forcsvfield . 4.6.4
Extended \mkpageprefix . 4.6.4
Extended \mkpagetotal . 4.6.4
Extended \mkpagefirst . 4.6.4
Added localization key inpreparation 4.9.2
Rearranged manual slightly, moving some tables to the appendix

1.1b 2011-02-04

Added option texencoding . 3.1.2.1 Biber only

Added option safeinputenc . 3.1.2.1 Biber only

Expanded documentation . 2.4.3.4
Improved mergedate option of bibliography style authoryear 3.3.2
Removed pass option of \DeclareSortingScheme 4.5.1 Biber only

Fixed some bugs

1.1a 2011-01-08

Added unsupported entry type @bibnote 2.1.3
Added \bibliography* . 3.5.1
Fixed some bugs

1.1 2011-01-05

Added option maxbibnames . 3.1.2.1
Added option minbibnames . 3.1.2.1
Added option maxcitenames . 3.1.2.1
Added option mincitenames . 3.1.2.1
Fixed idemtracker=strict and idemtracker=constrict 3.1.2.3
Added option mergedate to bibliography style authoryear 3.3.2
Added support for prefixnumbers to bibliography style alphabetic . . . 3.3.2
Made option useprefix settable on a per-type basis 3.1.3 Biber only

Made option useauthor settable on a per-type basis 3.1.3 Biber only

Made option useeditor settable on a per-type basis 3.1.3 Biber only

Made option usetranslator settable on a per-type basis 3.1.3 Biber only

Made option skipbib settable on a per-type basis 3.1.3 Biber only

Made option skiplos settable on a per-type basis 3.1.3 Biber only

Made option skiplab settable on a per-type basis 3.1.3 Biber only

Made option dataonly settable on a per-type basis 3.1.3 Biber only

Made option labelalpha settable on a per-type basis 3.1.2.3 Biber only

213

Made option labelnumber settable on a per-type basis 3.1.2.3
Made option labelyear settable on a per-type basis 3.1.2.3 Biber only

Made option singletitle settable on a per-type basis 3.1.2.3 Biber only

Made option uniquename settable on a per-type basis 3.1.2.3 Biber only

Made option indexing settable on a per-type basis 3.1.2.1
Made option indexing settable on a per-entry basis 3.1.2.1
Extended \ExecuteBibliographyOptions 3.2.2
Added \citedate . 3.6.5
Improved static entry sets . 3.10.5 Biber only

Introducing dynamic entry sets . 3.10.5 Biber only

Added \defbibentryset . 3.5.10 Biber only

Added option mcite . 3.1.1 Biber only

Added mcite/mciteplus-like commands 3.6.10 Biber only

Added \sortalphaothers . 3.8.1 Biber only

Extended \DeclareNameFormat . 4.4.2
Extended \DeclareIndexNameFormat 4.4.2
Extended \DeclareListFormat . 4.4.2
Extended \DeclareIndexListFormat 4.4.2
Extended \DeclareFieldFormat . 4.4.2
Extended \DeclareIndexFieldFormat 4.4.2
Added \DeclareNameFormat* . 4.4.2
Added \DeclareIndexNameFormat* . 4.4.2
Added \DeclareListFormat* . 4.4.2
Added \DeclareIndexListFormat* . 4.4.2
Added \DeclareFieldFormat* . 4.4.2
Added \DeclareIndexFieldFormat* 4.4.2
Introducing configurable sorting schemes Biber only

Added \DeclareSortingScheme . 4.5.1 Biber only

Added \DeclarePresort . 4.5.1 Biber only

Added \DeclareSortExclusion . 4.5.1 Biber only

Added \DeclareLabelname . 4.5.2 Biber only

Added \DeclareLabelyear . 4.5.2 Biber only

Improved special field labelname . 4.2.4 Biber only

Improved special field labelyear . 4.2.4 Biber only

Added \entrydata* . 4.4.1
Added \RequireBiber . 4.6.4
Added option check to \printbibliography 3.5.2
Added option check to \printshorthands 3.5.3
Added \defbibcheck . 3.5.9
Updated support for Portuguese (José Carlos Santos)
Fixed conflict with titletoc
Fixed some bugs

1.0 2010-11-19

First oYcially stable release
Renamed option bibencoding=inputenc to bibencoding=auto 3.1.2.1

214

Made bibencoding=auto the package default 3.1.2.1
Added option backend=bibtexu . 3.1.2.1
Slightly updated documentation . 2.4.3
Updated support for Dutch (Alexander van Loon)
Updated support for Italian (Andrea Marchitelli)

215

	Contents
	List of Tables
	Introduction
	About
	License
	Feedback
	Acknowledgments
	Prerequisites
	Requirements
	Recommended Packages
	Compatible Classes and Packages
	Incompatible Packages

	Database Guide
	Entry Types
	Regular Types
	article
	book
	mvbook
	inbook
	bookinbook
	suppbook
	booklet
	collection
	mvcollection
	incollection
	suppcollection
	manual
	misc
	online
	patent
	periodical
	suppperiodical
	proceedings
	mvproceedings
	inproceedings
	reference
	mvreference
	inreference
	report
	set
	thesis
	unpublished
	custom[a–f]

	Type Aliases
	conference
	electronic
	mastersthesis
	phdthesis
	techreport
	www

	Unsupported Types
	artwork
	audio
	bibnote
	commentary
	image
	jurisdiction
	legislation
	legal
	letter
	movie
	music
	performance
	review
	software
	standard
	video

	Entry Fields
	Data Types
	Data Fields
	abstract
	addendum
	afterword
	annotation
	annotator
	author
	authortype
	bookauthor
	bookpagination
	booksubtitle
	booktitle
	booktitleaddon
	chapter
	commentator
	date
	doi
	edition
	editor
	editora
	editorb
	editorc
	editortype
	editoratype
	editorbtype
	editorctype
	eid
	eprint
	eprintclass
	eprinttype
	eventdate
	eventtitle
	file
	foreword
	holder
	howpublished
	indextitle
	institution
	introduction
	isan
	isbn
	ismn
	isrn
	issn
	issue
	issuesubtitle
	issuetitle
	iswc
	journalsubtitle
	journaltitle
	label
	language
	library
	location
	mainsubtitle
	maintitle
	maintitleaddon
	month
	nameaddon
	note
	number
	organization
	origdate
	origlanguage
	origlocation
	origpublisher
	origtitle
	pages
	pagetotal
	pagination
	part
	publisher
	pubstate
	reprinttitle
	series
	shortauthor
	shorteditor
	shorthand
	shorthandintro
	shortjournal
	shortseries
	shorttitle
	subtitle
	title
	titleaddon
	translator
	type
	url
	urldate
	venue
	version
	volume
	volumes
	year

	Special Fields
	crossref
	entryset
	entrysubtype
	execute
	gender
	hyphenation
	indexsorttitle
	keywords
	options
	presort
	sortkey
	sortname
	sortshorthand
	sorttitle
	sortyear
	xref

	Custom Fields
	name[a–c]
	name[a–c]type
	list[a–f]
	user[a–f]
	verb[a–c]

	Field Aliases
	address
	annote
	archiveprefix
	journal
	key
	pdf
	primaryclass
	school

	Usage Notes
	The Entry Type @inbook
	Missing and Omissible Data
	Corporate Authors and Editors
	Literal Lists
	Titles
	Editorial Roles
	Publication and Journal Series
	Date Specifications
	Months and Journal Issues
	Pagination

	Hints and Caveats
	Cross-referencing
	The 'crossref' field (BibTeX)
	The 'crossref' field (Biber)
	The 'xref' field

	Capacity Issues
	BibTeX
	bibtex8
	Biber

	Sorting and Encoding Issues
	BibTeX
	bibtex8
	Biber
	Specifying Encodings

	Editors and Compiler Scripts

	User Guide
	Package Options
	Load-time Options
	style
	bibstyle
	citestyle
	natbib
	mcite

	Preamble Options
	General
	sorting
	sortcase
	sortupper
	sortlocale
	sortlos
	sortcites
	maxnames
	minnames
	maxbibnames
	minbibnames
	maxcitenames
	mincitenames
	maxitems
	minitems
	autocite
	autopunct
	language
	clearlang
	babel
	block
	notetype
	hyperref
	backref
	backrefstyle
	backrefsetstyle
	indexing
	loadfiles
	refsection
	refsegment
	citereset
	abbreviate
	date
	origdate
	eventdate
	urldate
	alldates
	datezeros
	dateabbrev
	defernumbers
	punctfont
	arxiv
	backend
	texencoding
	bibencoding
	safeinputenc
	bibwarn
	mincrossrefs

	Style-specific
	isbn
	url
	doi
	eprint

	Internal
	pagetracker
	citecounter
	citetracker
	ibidtracker
	opcittracker
	loccittracker
	idemtracker
	parentracker
	maxparens
	firstinits
	terseinits
	labelalpha
	maxalphanames
	minalphanames
	labelnumber
	labelyear
	singletitle
	uniquename
	uniquelist

	Entry Options
	Preamble/Type/Entry Options
	useauthor
	useeditor
	usetranslator
	useprefix
	indexing

	Type/Entry Options
	skipbib
	skiplos
	skiplab
	dataonly

	Legacy Options
	openbib

	Global Customization
	Configuration File
	Setting Package Options
	\ExecuteBibliographyOptions

	Standard Styles
	Citation Styles
	Bibliography Styles

	Sorting Options
	Bibliography Commands
	Resources
	\addbibresource
	\addglobalbib
	\addsectionbib
	\bibliography

	The Bibliography
	\printbibliography
	\bibbysection
	\bibbysegment
	\bibbycategory
	\printbibheading

	The List of Shorthands
	\printshorthands

	Bibliography Sections
	refsection
	\newrefsection

	Bibliography Segments
	refsegment
	\newrefsegment

	Bibliography Categories
	\DeclareBibliographyCategory
	\addtocategory

	Bibliography Headings and Environments
	\defbibenvironment
	\defbibheading

	Bibliography Notes
	\defbibnote

	Bibliography Filters and Checks
	\defbibfilter
	\defbibcheck

	Dynamic Entry Sets
	\defbibentryset

	Citation Commands
	Standard Commands
	\cite
	\Cite
	\parencite
	\Parencite
	\footcite
	\footcitetext

	Style-specific Commands
	\textcite
	\Textcite
	\smartcite
	\Smartcite
	\cite*
	\parencite*
	\supercite

	Qualified Citation Lists
	\cites
	\Cites
	\parencites
	\Parencites
	\footcites
	\footcitetexts
	\smartcites
	\Smartcites
	\textcites
	\Textcites
	\supercites

	Style-independent Commands
	\autocite
	\Autocite
	\autocites
	\Autocites

	Text Commands
	\citeauthor
	\Citeauthor
	\citetitle
	\citeyear
	\citedate
	\citeurl
	\parentext
	\brackettext

	Special Commands
	\nocite
	\fullcite
	\footfullcite
	\volcite
	\Volcite
	\pvolcite
	\Pvolcite
	\fvolcite
	\ftvolcite
	\svolcite
	\Svolcite
	\tvolcite
	\Tvolcite
	\avolcite
	\Avolcite
	\notecite
	\Notecite
	\pnotecite
	\Pnotecite
	\fnotecite

	Low-level Commands
	\citename
	\citelist
	\citefield

	Miscellaneous Commands
	\citereset
	\citereset*
	\mancite
	\pno
	\ppno
	\nopp
	\psq
	\psqq
	\RN
	\Rn

	natbib Compatibility Commands
	mcite-like Citation Commands

	Localization Commands
	\DefineBibliographyStrings
	\DefineBibliographyExtras
	\UndefineBibliographyExtras
	\DefineHyphenationExceptions
	\NewBibliographyString

	Formatting Commands
	Generic Commands and Hooks
	\bibsetup
	\bibfont
	\citesetup
	\newblockpunct
	\newunitpunct
	\finentrypunct
	\bibnamedelima
	\bibnamedelimb
	\bibnamedelimc
	\bibnamedelimd
	\bibnamedelimi
	\bibinitperiod
	\bibinitdelim
	\bibinithyphendelim
	\bibindexnamedelima
	\bibindexnamedelimb
	\bibindexnamedelimc
	\bibindexnamedelimd
	\bibindexnamedelimi
	\bibindexinitperiod
	\bibindexinitdelim
	\bibindexinithyphendelim
	\bibnamedash
	\labelnamepunct
	\subtitlepunct
	\intitlepunct
	\bibpagespunct
	\bibpagerefpunct
	\multinamedelim
	\finalnamedelim
	\revsdnamedelim
	\andothersdelim
	\multilistdelim
	\finallistdelim
	\andmoredelim
	\multicitedelim
	\supercitedelim
	\compcitedelim
	\nametitledelim
	\nameyeardelim
	\labelalphaothers
	\sortalphaothers
	\prenotedelim
	\postnotedelim
	\mkbibnamelast
	\mkbibnamefirst
	\mkbibnameprefix
	\mkbibnameaffix

	Language-specific Commands
	\bibrangedash
	\bibdatedash
	\mkbibdatelong
	\mkbibdateshort
	\finalandcomma
	\mkbibordinal
	\mkbibmascord
	\mkbibfemord
	\mkbibordedition
	\mkbibordseries

	Lengths and Counters
	\bibhang
	\biblabelsep
	\bibitemsep
	\bibnamesep
	\bibinitsep
	\bibparsep
	abbrvpenalty
	highnamepenalty
	lownamepenalty

	All-purpose Commands
	\bibellipsis
	\noligature
	\hyphenate
	\hyphen
	\nbhyphen
	\nohyphenation
	\textnohyphenation
	\mknumalph
	\mkbibacro
	\autocap

	Language notes
	American
	Spanish
	smartand
	\forceE
	\forceY

	Greek

	Usage Notes
	Overview
	Auxiliary Files
	Multiple Bibliographies
	Subdivided Bibliographies
	Entry Sets
	Static entry sets
	Dynamic entry sets

	Electronic Publishing Information
	External Abstracts and Annotations

	Hints and Caveats
	Usage with KOMA-Script Classes
	\ifkomabibtotoc
	\ifkomabibtotocnumbered

	Usage with the Memoir Class
	\ifmemoirbibintoc

	Page Numbers in Citations
	Name Parts and Name Spacing
	Bibliography Filters and Citation Labels
	Active Characters in Bibliography Headings
	Grouping in Reference Sections and Segments

	Author Guide
	Overview
	Bibliography Styles
	Bibliography Style Files
	\RequireBibliographyStyle
	\InitializeBibliographyStyle
	\DeclareBibliographyDriver
	\DeclareBibliographyAlias
	\DeclareBibliographyOption
	\DeclareEntryOption

	Bibliography Environments
	Bibliography Drivers
	Special Fields
	Generic Fields
	entrykey
	childentrykey
	entrytype
	childentrytype
	entrysetcount
	hash
	namehash
	fullhash
	pageref
	sortinit

	Fields for Use in Citation Labels
	labelalpha
	extraalpha
	labelname
	labelnumber
	prefixnumber
	labeltitle
	labelyear
	extrayear

	Date Component Fields
	day
	month
	year
	endday
	endmonth
	endyear
	origday
	origmonth
	origyear
	origendday
	origendmonth
	origendyear
	eventday
	eventmonth
	eventyear
	eventendday
	eventendmonth
	eventendyear
	urlday
	urlmonth
	urlyear
	urlendday
	urlendmonth
	urlendyear

	Citation Styles
	Citation Style Files
	\RequireCitationStyle
	\InitializeCitationStyle
	\OnManualCitation
	\DeclareCiteCommand
	\DeclareMultiCiteCommand
	\DeclareAutoCiteCommand

	Special Fields
	prenote
	postnote

	Data Interface
	Data Commands
	\printfield
	\printlist
	\printnames
	\printtext
	\printfile
	\printdate
	\printdateextra
	\printurldate
	\printorigdate
	\printeventdate
	\indexfield
	\indexlist
	\indexnames
	\entrydata
	\entryset

	Formatting Directives
	\DeclareFieldFormat
	\DeclareListFormat
	\DeclareNameFormat
	\DeclareIndexFieldFormat
	\DeclareIndexListFormat
	\DeclareIndexNameFormat
	\DeclareFieldAlias
	\DeclareListAlias
	\DeclareNameAlias
	\DeclareIndexFieldAlias
	\DeclareIndexListAlias
	\DeclareIndexNameAlias

	Customization
	Sorting
	\DeclareSortingScheme
	\sort
	\name
	\list
	\field
	\literal
	\citeorder
	\DeclareSortExclusion
	\DeclarePresort

	Special Fields
	\DeclareLabelname
	\DeclareLabelyear

	Data Inheritance ('crossref')
	\DefaultInheritance
	\except
	\DeclareDataInheritance
	\inherit
	\noinherit
	\ResetDataInheritance

	Auxiliary Commands
	Data Commands
	\thefield
	\strfield
	\thelist
	\thename
	\savefield
	\savelist
	\savename
	\savefieldcs
	\savelistcs
	\savenamecs
	\restorefield
	\restorelist
	\restorename
	\clearfield
	\clearlist
	\clearname

	Stand-alone Tests
	\iffieldundef
	\iflistundef
	\ifnameundef
	\iffieldsequal
	\iflistsequal
	\ifnamesequal
	\iffieldequals
	\iflistequals
	\ifnameequals
	\iffieldequalcs
	\iflistequalcs
	\ifnameequalcs
	\iffieldequalstr
	\iffieldxref
	\iflistxref
	\ifnamexref
	\ifcurrentfield
	\ifcurrentlist
	\ifcurrentname
	\ifuseprefix
	\ifuseauthor
	\ifuseeditor
	\ifusetranslator
	\ifsingletitle
	\ifandothers
	\ifmorenames
	\ifmoreitems
	\iffirstinits
	\ifkeyword
	\ifentrykeyword
	\ifcategory
	\ifentrycategory
	\ifciteseen
	\ifentryseen
	\ifciteibid
	\ifciteidem
	\ifopcit
	\ifloccit
	\iffirstonpage
	\ifsamepage
	\ifinteger
	\ifnumeral
	\ifnumerals
	\ifpages
	\iffieldint
	\iffieldnum
	\iffieldnums
	\iffieldpages
	\ifbibstring
	\ifbibxstring
	\iffieldbibstring
	\ifdriver
	\ifcapital
	\ifcitation
	\ifbibliography
	\ifnatbibmode
	\ifciteindex
	\ifbibindex
	\iffootnote
	citecounter
	uniquename
	uniquelist
	parenlevel

	Tests with \ifboolexpr and \ifthenelse
	\ifboolexpr
	\ifthenelse

	Miscellaneous Commands
	\newbibmacro
	\renewbibmacro
	\providebibmacro
	\usebibmacro
	\savecommand
	\restorecommand
	\savebibmacro
	\restorebibmacro
	\savefieldformat
	\restorefieldformat
	\savelistformat
	\restorelistformat
	\savenameformat
	\restorenameformat
	\usedriver
	\bibhypertarget
	\bibhyperlink
	\bibhyperref
	\ifhyperref
	\docsvfield
	\forcsvfield
	\MakeCapital
	\MakeSentenceCase
	\mkpageprefix
	\mkpagetotal
	\mkcomprange
	\mkfirstpage
	\DeclareNumChars
	\DeclareRangeChars
	\DeclareRangeCommands
	\DeclarePageCommands
	\NumCheckSetup
	\DeclareCaseLangs
	\BibliographyWarning
	\RequireBiber

	Punctuation
	Block and Unit Punctuation
	\newblock
	\newunit
	\finentry
	\setunit
	\setpunctfont
	\resetpunctfont

	Punctuation Tests
	\ifpunct
	\ifterm
	\ifpunctmark

	Adding Punctuation
	\adddot
	\addcomma
	\addsemicolon
	\addcolon
	\addperiod
	\addexclam
	\addquestion
	\isdot
	\nopunct

	Adding Whitespace
	\unspace
	\addspace
	\addnbspace
	\addthinspace
	\addnbthinspace
	\addlowpenspace
	\addhighpenspace
	\addlpthinspace
	\addhpthinspace
	\addabbrvspace
	\addabthinspace
	\adddotspace
	\addslash

	Configuring Punctuation and Capitalization
	\DeclareAutoPunctuation
	\DeclareCapitalPunctuation
	\DeclarePunctuationPairs
	\DeclareQuotePunctuation
	\uspunctuation
	\stdpunctuation

	Correcting Punctuation Tracking
	\bibsentence
	\midsentence

	Localization Strings
	\bibstring
	\biblstring
	\bibsstring
	\bibcpstring
	\bibcplstring
	\bibcpsstring
	\bibucstring
	\bibuclstring
	\bibucsstring
	\biblcstring
	\biblclstring
	\biblcsstring
	\bibxstring
	\bibxlstring
	\bibxsstring

	Localization Modules
	Localization Commands
	\DeclareBibliographyStrings
	\InheritBibliographyStrings
	\DeclareBibliographyExtras
	\UndeclareBibliographyExtras
	\InheritBibliographyExtras
	\DeclareHyphenationExceptions
	\DeclareRedundantLanguages
	\DeclareLanguageMapping
	\NewBibliographyString

	Localization Keys
	Headings
	Roles, Expressed as Functions
	Concatenated Editor Roles, Expressed as Functions
	Concatenated Translator Roles, Expressed as Functions
	Roles, Expressed as Actions
	Concatenated Editor Roles, Expressed as Actions
	Concatenated Translator Roles, Expressed as Actions
	Roles, Expressed as Objects
	Supplementary Material
	Publication Details
	Publication State
	Pagination
	Types
	Miscellaneous
	Labels
	Citations
	Month Names
	Language Names
	Country Names
	Patents and Patent Requests

	Formatting Commands
	User-definable Commands and Hooks
	\bibnamedelima
	\bibnamedelimb
	\bibnamedelimc
	\bibnamedelimd
	\bibnamedelimi
	\bibinitperiod
	\bibinitdelim
	\bibinithyphendelim
	\bibindexnamedelima
	\bibindexnamedelimb
	\bibindexnamedelimc
	\bibindexnamedelimd
	\bibindexnamedelimi
	\bibindexinitperiod
	\bibindexinitdelim
	\bibindexinithyphendelim
	\bibnamedash
	\labelnamepunct
	\subtitlepunct
	\intitlepunct
	\bibpagespunct
	\bibpagerefpunct
	\multinamedelim
	\finalnamedelim
	\revsdnamedelim
	\andothersdelim
	\multilistdelim
	\finallistdelim
	\andmoredelim
	\multicitedelim
	\supercitedelim
	\compcitedelim
	\nametitledelim
	\nameyeardelim
	\prenotedelim
	\postnotedelim
	\mkbibnamelast
	\mkbibnamefirst
	\mkbibnameprefix
	\mkbibnameaffix

	Language-specific Commands
	\bibrangedash
	\bibdatedash
	\mkbibdatelong
	\mkbibdateshort
	\finalandcomma
	\mkbibordinal
	\mkbibmascord
	\mkbibfemord
	\mkbibordedition
	\mkbibordseries

	User-definable Lengths and Counters
	\bibhang
	\biblabelsep
	\bibitemsep
	\bibparsep
	abbrvpenalty
	lownamepenalty
	highnamepenalty

	Auxiliary Commands and Hooks
	\mkbibemph
	\mkbibbold
	\mkbibquote
	\mkbibparens
	\mkbibbrackets
	\bibopenparen
	\bibopenbracket
	\mkbibfootnote
	\mkbibfootnotetext
	\mkbibendnote
	\mkbibendnotetext
	\bibfootnotewrapper
	\bibendnotewrapper
	\mkbibsuperscript
	\mkbibmonth
	\mkdatezeros
	\stripzeros
	shorthandwidth
	labelnumberwidth
	labelalphawidth
	bibhyperref
	bibhyperlink
	bibhypertarget
	volcitepages
	volcitevolume

	Auxiliary Lengths, Counters, and Other Features
	\shorthandwidth
	\labelnumberwidth
	\labelalphawidth
	maxextraalpha
	maxextrayear
	refsection
	refsegment
	maxnames
	minnames
	maxitems
	minitems
	instcount
	citetotal
	citecount
	multicitetotal
	multicitecount
	listtotal
	listcount
	liststart
	liststop
	\currentfield
	\currentlist
	\currentname

	General Purpose Hooks
	\AtBeginBibliography
	\AtBeginShorthands
	\AtEveryBibitem
	\AtEveryLositem
	\AtEveryCite
	\AtEveryCitekey
	\AtNextCite
	\AtNextCitekey
	\AtDataInput

	Hints and Caveats
	Entry Sets
	Electronic Publishing Information
	External Abstracts and Annotations
	Name Disambiguation
	Individual Names ('uniquename')
	Lists of Names ('uniquelist')

	Trackers in Floats and TOC/LOT/LOF
	Mixing Programming Interfaces
	Using the Punctuation Tracker
	The Basics
	Common Mistakes
	Advanced Usage

	Custom Localization Modules
	Grouping
	Namespaces

	Appendix
	Default 'crossref' Setup
	Default Sorting Schemes
	Alphabetic 1
	Alphabetic 2
	Chronological

	Revision History
	1.6 (2011-07-29)
	1.5a (2011-06-17)
	1.5 (2011-06-08)
	1.4c (2011-05-12)
	1.4b (2011-04-12)
	1.4a (2011-04-06)
	1.4 (2011-03-31)
	1.3a (2011-03-18)
	1.3 (2011-03-14)
	1.2a (2011-02-13)
	1.2 (2011-02-12)
	1.1b (2011-02-04)
	1.1a (2011-01-08)
	1.1 (2011-01-05)
	1.0 (2010-11-19)

