
5 October 2023

Programmieren für Studierende der
Naturwissenschaften

Lecture 4 – Aggregated Data Types and Functions

Prof. Dr. Gemma Roig
M.Sc. Alperen Kantarcı
M.Sc. Gamze Akyol

5 October 2023

• L1: Basics of programming
P1: Exercise 1 and help to installments.

• L2: Elementary data types and control structures
P2: Exercises

• L3: Aggregated data types
P3: Exercises

• L4: Aggregated data types and functions
P4: Exercises

• L5:Testing,error messages and self-help
P5: Exercises

Contents

5 October 2023

The head-driven or pre-test loop:
• first the termination condition is checked before the loop body is run through

(usually indicated by the keyword WHILE (=so long-until).

The foot-driven or re-checking loop (implementable with a trick inPython):
• only after the loop body has been run through, the termination condition is

checked e.g. by a construct REPEAT-UNTIL (=repeat-to).

Review of Loops

5 October 2023

When you encounter with a problem:

• Decomposition into subproblems
• Formulate sub-problems linguistically (do not code it directlyfirst)
• Draw, visualize when the relationships seem complex to grasp
• Define essential objects and describe their properties, if necessary
• Do not think too detailed at the start. Start coarse and go into the details

Thinking about problems

5 October 2023

Review of data types

5 October 2023

As in mathematics:
• The order is not important
• It is about ”being contained", therefore no duplicates

• Main benefits:
• Test for membership, remove duplicates
• Calculate classical set operations such as intersection or difference

between sets
• Create quantities: By converting from an iterable data type (e.g. string or list).
• Elements must be immutable and comparable
• Attention! The empty set cannot be created by {}! We use set() for empty set.
That would be a dictionary.

Set and Frozen Set

5 October 2023

Set and Frozen Set

5 October 2023

Operators

5 October 2023

Quantities

• m.add(x)
Add an element x to the set M. (Has no effect if x is already an element of

M)

• m.clear()
Empties the set M

• m.pop()
Removes an element from the set M

• m.remove(x)
Remove element x from the set M (x must be an element of M, otherwise
keyerror)

Watch Python documentary and try it out!

5 October 2023

Dictionary

• A bit different from the other aggregated data types

• Dictionaries implement partial functions. For this one uses 2-tuples (pairs) of the form
(key,value), written for example as {key:value}

• Since the value can again be an n-tuple, but also a list, etc., arbitrary partial functions
are implementable.

• In contrast to sequences, which are indexed by a number interval, dictionaries are
indexed by keys.

• The keys must have some immutable type. So strings and numbers can always be keys.
Tuples can be used as keys if they contain only strings, numbers, tuples, frozensets

5 October 2023

Dictionary

• A pair of braces{} creates an empty dictionary

• A comma-separated sequence of (key:value) pairs inside the parentheses
inserts the initial pairs into the dictionary.

• Main operations on a dictionary are:
• Saving a value under a key and retrieving this value when the key is specified
• It is also possible to delete a (key:value) pair with delitem ()
• If a key that already exists is used when saving, the old key associated with it

is forgotten.
• It generates an error to retrieve a value with a non-existent key.

5 October 2023

Data type None

• The None data type has only one value in Python:

• The constant None
• None is a keyword. It serves as a placeholder for variables that actually have no value

(or not yet known)

• Functions that do not return a value implicitly have None as return value

• When the interactive interpreter evaluates an expression, it outputs only if the return
value is not None

• Testing in the console

5 October 2023

Functions

5 October 2023

Functions

• Why are the control structures that we know so far not sufficient?

• Enable functions:
• a better structuring of programs
• Modularization (many components with defined interfaces)
• Re-use of code parts externally and internally
• Increasing the efficiency of the compilations

• Attention: In the context of this event, the differences between functions and methods are
not considered in more detail!

• Students of computer science learn about these differences in the context of
“object-oriented programming”

5 October 2023

Functions - Subroutines

• A sequence of instructions is combined under one name

• Arguments(so-called parameters) can be passed to this sequence
and, if necessary, a value or values can also be returned

•The parameters are usually specified by order, type and number
and/or by names

• The good news is that you already know how to call something
like this!

5 October 2023

Functions

• Functions are defined with the def statement, parameters in round brackets directly
behind.

• The functional body must be indented.
• The end of the function definition is indicated by undoing the indentation.
• Return is the keyword that causes the value to be assigned to the function value and the

function to terminate.
• A return is optional. But be aware!
• If no value is specified or if the return statement is omitted, the object None is returned.

5 October 2023

Functions - Calls
• The function definition must be made in the program text (lexically)

before the call (only then the name of the function is known)

• All arguments in the function definition must be specified concretely and
in the correct order when called

• Default-parameters

5 October 2023

Functions - Calls

5 October 2023

Functions - Calls

5 October 2023

Namespaces

• All elements that we use or reserve are in a namespace.
• Functions form their own namespaces
• Modules (see upcoming topics) can also form their own namespaces
• Accesses to elements in different namespaces are not immediately
intuitively understandable. Consider the given example

