Prof. Dr. Gemma Roig
M.Sc. Alperen Kantarci
M.Sc. Gamze Akyol

Programmieren fur Studierende der
Naturwissenschaften

Lecture 5 — Testing error messages, selt-help and "“OOP" (extra)

000000000000

Contents

FRANKFURT AM MAIN

 L1: Basics of programming
P1: Exercise 1 and help to installments.

» L2: Elementary data types and control structures
P2: Exercises

» L3:Aggregated data types
P3: Exercises

» |L4: Aggregated data types and functions
P4: Exercises

 |5:Testing,error messages, self-help and OOP (extra)
P5: Exercises

5 October 2023

Static and Dynamic Programming
* Premise: The later an error is found, the more difficult the correction

* Finding sources of errors in advance saves time during testing:
» Static program analysis

» Code Review: Structure, Semantics, Syntax and Logic
* Rules and specifications

» Dynamic program analysis of an executable implementation

» Verification - proof of correctness against the specification
* Are we developing correctly?

» Validation - meeting expectations
* Are we developing the right thing?

5 October 2023

Time Required

FRANKFURT AM MAIN

Up to 50% of the development time is testing! Not in frequently even more costly!

» Developers can test in an economically sensible way
» Psychologically questionable

* Formal test processes can vary in complexity:

* Sequence planning
» Sections that do not produce data
» Sections that produce data

» Sections that require data
* All these steps cost time!

5 October 2023

Planning

* Test preparation
 Test quantities and target results
* |If applicable, test environment(s) and test object(s)

* (Finally!)Test execution

» Spelling and syntax errors

* Program logic Is tested and logged manually
 Jest and log test quantities

e Test evaluation
e | ocalization and elimination of the causes of errors

* Return place holders and test objects to real code
 Test everything again

5 October 2023

Selection of test cases

FRANKFURT AM MAIN

» Work more efficiently through appropriate minimization of test cases

* Do not test twice
o Test border line cases

And/Or
» Generate random test cases

"Program testing can be used to show the presence of bugs, but never show their

absence!"
[Edsger Wybe Dijkstra (1930-2002): The Humble Programmer, ACM Turing Lecture
1972]

5 October 2023

Selection of test cases
Practice
* Error messages

* Type

* Meaning

* Place In code

» [s the Procedure wrong without an error message?
» [dentify cause of error in source code
» Define your own error messages (we don't do that)

» User input as a frequent source of errors (example: checksum) Test!

All Python "built-in" error messages (Built-in Exceptions) can be found in the
documentation: https://docs.python.org/3/library/exceptions.html.

5 October 2023

Name Error

FRANKFURT AM MAIN

» At the time of execution the name used is not known

» Common causes:
» Variable name misspelled
» Variable has not been defined yet
* A module,which should be used, was not imported

» A function is called before it has been defined

>>> a = 10
>>> name = '"hel 1o0°
>>> praint (NAME)

ITraceback (most recent call last):
ile "<pyshells2>", line 1, in <module
print (NAME)

NamekError: name 'NAME' 1s not defined

5 October 2023

Syntax and EOL Errors

ParseError indicates syntax error
 Common causes:

* Missing brackets

* Missing quotation marks

* Missing commas

IJL.’\; \,\}tljl I\Jll_ ’

< MiSSing colon >>> print ("hello world"

hello world
>>> print ("I

EOL:end-of-line S
« COMMOon causes: SyntaxError: E
* Missing brackets g
- Missing quotation marks =~ "

UNIVERSITAT

FRANKFURT AM MAIN

print (value,

- - .’

', end='\n', file=sys.stdout, flush=False)

* Missing commas
* Missing colon

5 October 2023

FRANKFURT AM MAIN

Type Error

Type Error

* Indicates wrong data types in an operation

 Common causes:

* Incorrect data types for simple operation

* An incorrect data type was inserted into a function and leads to incorrect
calculations there

A return was forgotten and therefore the function result is evaluated to "None”
and further used

5 October 2023

More errors

Indentation Error:
* |[ncorrect indentation

* Index Error:
» Use of invalid indices, e.qQ.
ea = [1,2] print (a[2])

* Key Error
* An attempt iIs made to access a key in the dictionary that does not exist

* |O Error:
* Operations on files that do not exist

5 October 2023

Errors without error messages

 Quite frequently happens
» Output values and variable types with print for control purposes

* Output branches with print
* If necessary, comment out and examine suspicious areas

* Error in loops

* Index instead of entry or vice versa
* Note: range(n): Start at 0 and end at n-1

 Check termination conditions

5 October 2023

Errors without error messages

 Quite frequently happens
» Output values and variable types with print for control purposes

* Output branches with print
* If necessary, comment out and examine suspicious areas

* Error in loops

* Index instead of entry or vice versa
* Note: range(n): Start at 0 and end at n-1

 Check termination conditions

5 October 2023

How to avoid mistakes?

FRANKFURT AM MAIN

e Use comments
* Insert Doc strings
e GIve sensible variable/function names

» Keep nesting depth low (separate the logic into smaller
functions)

5 October 2023

FRANKFURT AM MAIN

Doc Strings

» Adhere to conventions
* First sentence short - fact (n):

"""Computes the factorial of n."""

* After that blank line f (0 <= 1):
* Further explanations else:

* Blank line fact (n):

° Language:EninSh "“"Ein kurzer Satz, der die Funktionsweise erklart.

Hier konnten zusatzliche Infos stehen

(N <= 1):
1

n n*fact(n-1)

n*fact(n-1)

5 October 2023

Doc Strings (If you don‘t want to write documentation)
The docstring of a module m is stored in m.doc and can thus also be

read out.

>>> testfile

>>> testfile.fact. doc

"Ein kurzer Satz, der die Funktionswelse erklart.\n\n Hier konnten zusatzliche
Infos stehen\n\n

>>> help(testfile.fact)

Help on function fact in module testfile:

fact(n)
Eln kurzer Satz, der die Funktionswelse erklart,

Hier konnten zusatzliche Infos stehen

* On-the-fly maintenance of docstrings can make documentation work
much easier and ensures that your code Is always up to date

» Especially recommended for collaborative work

5 October 2023

Unavoidable mistakes

* |In some situations, mistakes cannot be avoided
* Or even belong to the conception

» Solution: Exceptions
A powerful tool
» Use with caution
* |gnore error messages
e ...0r have them react to it specifically:
try:
<Instructions>

except <TypeOfError>: #for all errors by except
<Alternativelnstructions>

» Simplification:try this and if an error occurs, execute that

5 October 2023

Try except UNIVERSITAT
try:

<instructions>
except <TypeOfError>:

<Alternativelnstructions>

» Execute try block
* No error: except block is skipped

* Error: Execute except block

* A try can be followed by several excepts, which handle different
errors accordingly

5 October 2023

GOETHE ﬁ

Try except

AAAAAAAAAAAAAAA

while True:
try:
n = input(“Bitte eine Ganzzahl (integer) eingeben: ")
n = 1int(n)
break
except ValueError:
print(“"Keine Integer! Bitte nochmals versuchen ...")
print('[Super! Das wars!"')

5 October 2023

Conclusion

FRANKFURT AM MAIN

Conclusion
*Testing is time-consuming and is part of software development
*Error messages can be bypassed

However, ignoring them can have fatal consequences

Comments can massively facilitate testing

*Not seeing error messages does not mean an error-free implementation
 [esting Is not a panacea!

However, as a developer you can't do without it!

5 October 2023

GOETHE @

Object Oriented Programming

FRANKFURT AM MAIN

* [tis the most commonly used paradigm in big software
projects

* Think everything like an object and their relation to the
world

» Makes the abstraction easier -> maintenance Is easier
too

* You evolve your classes by inheriting other classes (like
evolution of species)

5 October 2023

Object Oriented Programming

Object-oriented programming (OOP) is a programming paradigm that uses
"objects" to design software. Objects are instances of classes, which can contain
data (attributes) and functions (methods) related to that object.

OOP has several principles, including:

1.Encapsulation: Binding the data (attributes) and functions (methods) into a
single unit called a class.

2.Abstraction: Hiding complex implementation details and showing only the
essentials.

3.Inheritance: Allows one class to inherit properties and methods from another
class.

4.Polymorphism: Allows one interface to be used for a general class of actions.

5 October 2023

Class and Object

class Dog:

def init (self name, breed):

self.name = name

self.breed = breed

def bark(self):

print(f"{self.name} barks!")

H Create an instance o
max = Dog("Max" "Go

C

- the Dog class

en Retriever")

max.bark() # Output: Max barks!

5 October 2023

UNIVERSITAT

FRANKFURT AM MAIN

5 October 2023

Encapsulation

class Dog:

def init (self name, breed):

self.name = name

self.breed = breed

def bark(self):

print(f"{self.name} barks!")

H Create an instance o
max = Dog("Max" "Go

C

- the Dog class

en Retriever")

max.bark() # Output: Max barks!

UNIVERSITAT
(FURT AM]

FRANKF URT AM MAIN

In the above example, name and breed are attributes and bark is a method. They're encapsulated within the

Dog class.

5 October 2023

Abstraction

class Calculator:
def add(self, x, y):

return X +vy

def subtract(self, x, y):
return X -y

calc = Calculator()
print(calc.add(5, 3)) # Output: 8

We don't need to know how the add or subtract functions work internally. We just use them.

UNIVERSITAT

FRANKFURT AM MAIN

5 October 2023

Inheritance and Polymorphism (Only needed if you want to go
advanced levels)

class Poodle(Dog):
def show_off(self):
print(f"{self.name}, the Poodle, is showing off!")

ucy = Poodle("Lucy", "Poodle")
ucy.bark() # Output: Lucy barks!
ucy.show_off() # Output: Lucy, the Poodle, is showing off!

Inheritance and Polymorphism (Only needed if you want to go UNIVERSI?
advanced levels)

class Cat:
def speak(self):
print("Meow!")

class Dog:
def speak(self):
print("Woof!")

def animal_speak(animal):
animal.speak()

tom = Cat()
max = Dog()

animal_speak(tom) # Output: Meow!
animal_speak(max) # Output: Woof!

5 October 2023

One example to test

* We save this file as circle.py

class Circle:
def init (self radius):

self.radius = radius

def calculate area(self):
return round(3.141* selfradius ** 2. 2)

5 October 2023

5 October 2023

One example to test

e Now we can use our classes in other

 >>> from circle import Circle

» >>>circle_1 = Circle(42)

» >>> circle_2 = Circle(7)

* >>> circle_1

» <__main__.Circle object at 0x102b835d0>

* >>>circle_2
» < main__.Circle object at 0x1035e3910>

Python files

One example to test

* \WWe can access to object variables and functions

 >>> from circle import Circle

» >>> circle_1 = Circle(42)

» >>> circle_2 = Circle(7)

e >>> circle _1.radius 42

» >>> circle_1.calculate_area() 5541.77
e >>>circle 2.radius /

» >>> circle_2.calculate_area() 153.94
e >>> circle_1.radius = 100

* >>> circle_1.radius 100
» >>> circle_1.calculate_area() 31415.93

5 October 2023

5 October 2023

GOETHE @

FRANKFURT AM MAIN

Conclusion

* Object Oriented Programming is good for keeping a structured code.
* More useful in big projects (makes it easier to maintenance and expansion)
* |f you use modules, or create small projects. You need to learn it.

* Makes it easier to understand external modules for your own area (BioPy,

C
. A
o T

nemPy, PyTorch, NumPy, SciPy..)
so makes it easier to read documentation or even look at the source codes

nere is no correct way . It is your own imagination and decision. There are

guidelines but everyone codes differently.

