
5 October 2023

Programmieren für Studierende der
Naturwissenschaften

Lecture 5 – Testing error messages, self-help and “OOP“ (extra)

Prof. Dr. Gemma Roig
M.Sc. Alperen Kantarcı
M.Sc. Gamze Akyol

5 October 2023

• L1: Basics of programming
P1: Exercise 1 and help to installments.

• L2: Elementary data types and control structures
P2: Exercises

• L3: Aggregated data types
P3: Exercises

• L4: Aggregated data types and functions
P4: Exercises

• L5:Testing,error messages, self-help and OOP (extra)
P5: Exercises

Contents

5 October 2023

• Premise: The later an error is found, the more difficult the correction

• Finding sources of errors in advance saves time during testing:
• Static program analysis

• Code Review: Structure, Semantics, Syntax and Logic
• Rules and specifications

• Dynamic program analysis of an executable implementation

• Verification - proof of correctness against the specification
• Are we developing correctly?

• Validation - meeting expectations
• Are we developing the right thing?

Static and Dynamic Programming

5 October 2023

Up to 50% of the development time is testing! Not in frequently even more costly!

• Developers can test in an economically sensible way
• Psychologically questionable

• Formal test processes can vary in complexity:
• Sequence planning
• Sections that do not produce data
• Sections that produce data
• Sections that require data

• All these steps cost time!

Time Required

5 October 2023

• Test preparation
• Test quantities and target results
• If applicable, test environment(s) and test object(s)

• (Finally!)Test execution
• Spelling and syntax errors
• Program logic is tested and logged manually
• Test and log test quantities

• Test evaluation
• Localization and elimination of the causes of errors
• Return place holders and test objects to real code
• Test everything again

Planning

5 October 2023

• Work more efficiently through appropriate minimization of test cases
• Do not test twice
• Test border line cases

And/Or
• Generate random test cases

"Program testing can be used to show the presence of bugs, but never show their
absence!"
[Edsger Wybe Dijkstra (1930-2002): The Humble Programmer, ACM Turing Lecture
1972]

Selection of test cases

5 October 2023

Practice
• Error messages

• Type
• Meaning
• Place in code

• Is the Procedure wrong without an error message?
• Identify cause of error in source code
• Define your own error messages (we don’t do that)

• User input as a frequent source of errors (example: checksum) Test!

All Python "built-in" error messages (Built-in Exceptions) can be found in the
documentation: https://docs.python.org/3/library/exceptions.html.

Selection of test cases

5 October 2023

• At the time of execution the name used is not known

• Common causes:
• Variable name misspelled
• Variable has not been defined yet
• A module,which should be used, was not imported
• A function is called before it has been defined

Name Error

5 October 2023

ParseError indicates syntax error
• Common causes:

• Missing brackets
• Missing quotation marks
• Missing commas
• Missing colon

EOL:end-of-line
• Common causes:

• Missing brackets
• Missing quotation marks
• Missing commas
• Missing colon

Syntax and EOL Errors

5 October 2023

Type Error
• Indicates wrong data types in an operation
• Common causes:
• Incorrect data types for simple operation
• An incorrect data type was inserted into a function and leads to incorrect
calculations there
•A return was forgotten and therefore the function result is evaluated to "None”
and further used

Type Error

5 October 2023

Indentation Error:
• Incorrect indentation

• Index Error:
• Use of invalid indices, e.g.
• a = [1,2] print (a[2])

• Key Error
• An attempt is made to access a key in the dictionary that does not exist

• IO Error:
• Operations on files that do not exist

More errors

5 October 2023

• Quite frequently happens
• Output values and variable types with print for control purposes
• Output branches with print

• If necessary, comment out and examine suspicious areas

• Error in loops
• Index instead of entry or vice versa
• Note: range(n): Start at 0 and end at n-1
• Check termination conditions

Errors without error messages

5 October 2023

• Quite frequently happens
• Output values and variable types with print for control purposes
• Output branches with print

• If necessary, comment out and examine suspicious areas

• Error in loops
• Index instead of entry or vice versa
• Note: range(n): Start at 0 and end at n-1
• Check termination conditions

Errors without error messages

5 October 2023

• Use comments

• Insert Doc strings

• Give sensible variable/function names
• Keep nesting depth low (separate the logic into smaller
functions)

How to avoid mistakes?

5 October 2023

• Adhere to conventions
• First sentence short
• After that blank line
• Further explanations
• Blank line
• Language:English

Doc Strings

5 October 2023

The docstring of a module m is stored in m.doc and can thus also be
read out.

• On-the-fly maintenance of docstrings can make documentation work
much easier and ensures that your code is always up to date
• Especially recommended for collaborative work

Doc Strings (If you don‘t want to write documentation)

5 October 2023

• In some situations, mistakes cannot be avoided
• Or even belong to the conception
• Solution: Exceptions

• A powerful tool
• Use with caution
• Ignore error messages

• ...or have them react to it specifically:
try:

<instructions>
except <TypeOfError>: #or all errors by except

<AlternativeInstructions>
• Simplification:try this and if an error occurs, execute that

Unavoidable mistakes

5 October 2023

try:
<instructions>

except <TypeOfError>:
<AlternativeInstructions>

• Execute try block
• No error: except block is skipped
• Error: Execute except block

• A try can be followed by several excepts, which handle different
errors accordingly

Try except

5 October 2023

Try except

5 October 2023

Conclusion

Conclusion
•Testing is time-consuming and is part of software development
•Error messages can be bypassed

•However, ignoring them can have fatal consequences
•Comments can massively facilitate testing
•Not seeing error messages does not mean an error-free implementation
•Testing is not a panacea!
•However, as a developer you can’t do without it!

5 October 2023

Object Oriented Programming

• It is the most commonly used paradigm in big software
projects

• Think everything like an object and their relation to the
world

• Makes the abstraction easier -> maintenance is easier
too

• You evolve your classes by inheriting other classes (like
evolution of species)

5 October 2023

Object Oriented Programming

Object-oriented programming (OOP) is a programming paradigm that uses
"objects" to design software. Objects are instances of classes, which can contain
data (attributes) and functions (methods) related to that object.

OOP has several principles, including:
1.Encapsulation: Binding the data (attributes) and functions (methods) into a
single unit called a class.
2.Abstraction: Hiding complex implementation details and showing only the
essentials.
3.Inheritance: Allows one class to inherit properties and methods from another
class.
4.Polymorphism: Allows one interface to be used for a general class of actions.

5 October 2023

Class and Object

class Dog:
def __init__(self, name, breed):

self.name = name
self.breed = breed

def bark(self):
print(f"{self.name} barks!")

Create an instance of the Dog class
max = Dog("Max", "Golden Retriever")
max.bark() # Output: Max barks!

5 October 2023

Encapsulation

class Dog:
def __init__(self, name, breed):

self.name = name
self.breed = breed

def bark(self):
print(f"{self.name} barks!")

Create an instance of the Dog class
max = Dog("Max", "Golden Retriever")
max.bark() # Output: Max barks!

In the above example, name and breed are attributes and bark is a method. They're encapsulated within the
Dog class.

5 October 2023

Abstraction

class Calculator:
def add(self, x, y):

return x + y

def subtract(self, x, y):
return x - y

calc = Calculator()
print(calc.add(5, 3)) # Output: 8

We don't need to know how the add or subtract functions work internally. We just use them.

5 October 2023

Inheritance and Polymorphism (Only needed if you want to go
advanced levels)
class Poodle(Dog):

def show_off(self):
print(f"{self.name}, the Poodle, is showing off!")

lucy = Poodle("Lucy", "Poodle")
lucy.bark() # Output: Lucy barks!
lucy.show_off() # Output: Lucy, the Poodle, is showing off!

5 October 2023

Inheritance and Polymorphism (Only needed if you want to go
advanced levels)
class Cat:

def speak(self):
print("Meow!")

class Dog:
def speak(self):

print("Woof!")

def animal_speak(animal):
animal.speak()

tom = Cat()
max = Dog()

animal_speak(tom) # Output: Meow!
animal_speak(max) # Output: Woof!

5 October 2023

One example to test

• We save this file as circle.py

class Circle:
def __init__(self, radius):

self.radius = radius

def calculate_area(self):
return round(3.141* self.radius ** 2, 2)

5 October 2023

One example to test

• Now we can use our classes in other Python files

• >>> from circle import Circle
• >>> circle_1 = Circle(42)
• >>> circle_2 = Circle(7)
• >>> circle_1
• <__main__.Circle object at 0x102b835d0>
• >>> circle_2
• <__main__.Circle object at 0x1035e3910>

5 October 2023

One example to test

• We can access to object variables and functions

• >>> from circle import Circle
• >>> circle_1 = Circle(42)
• >>> circle_2 = Circle(7)
• >>> circle_1.radius 42
• >>> circle_1.calculate_area() 5541.77
• >>> circle_2.radius 7
• >>> circle_2.calculate_area() 153.94
• >>> circle_1.radius = 100
• >>> circle_1.radius 100
• >>> circle_1.calculate_area() 31415.93

5 October 2023

Conclusion

• Object Oriented Programming is good for keeping a structured code.
• More useful in big projects (makes it easier to maintenance and expansion)
• If you use modules, or create small projects. You need to learn it.
• Makes it easier to understand external modules for your own area (BioPy,

ChemPy, PyTorch, NumPy, SciPy..)
• Also makes it easier to read documentation or even look at the source codes
• There is no ”correct way”. It is your own imagination and decision. There are

guidelines but everyone codes differently.

