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Abstract-The built environment is thought to influence travel demand along three principal dimensions- 
density, diversity, and design. This paper tests this proposition by examining how the ‘3Ds’ affect trip rates 
and mode choice of residents in the San Francisco Bay Area. Using 1990 travel diary data and land-use 
records obtained from the U.S. census, regional inventories, and field surveys, models are estimated that 
relate features of the built environment to variations in vehicle miles traveled per household and mode choice, 
mainly for non-work trips. Factor analysis is used to linearly combine variables into the density and design 
dimensions of the built environment. The research finds that density, land-use diversity, and pedestrian- 
oriented designs generally reduce trip rates and encourage non-auto travel in statistically significant ways, 
though their influences appear to be fairly marginal. Elasticities between variables and factors that capture 
the 3Ds and various measures of travel demand are generally in the 0.06 to 0.18 range, expressed in absolute 
terms. Compact development was found to exert the strongest influence on personal business trips. Within- 
neighborhood retail shops, on the other hand, were most strongly associated with mode choice for work trips. 
And while a factor capturing ‘walking quality’ was only moderately related to mode choice for non-work 
trips, those living in neighborhoods with grid-iron street designs and restricted commercial parking were 
nonetheless found to average significantly less vehicle miles of travel and rely less on single-occupant vehicles 
for non-work trips. Overall, this research shows that the elasticities between each dimension of the built 
environment and travel demand are modest to moderate, though certainly not inconsequential. Thus it sup- 
ports the contention of new urbanists and others that creating more compact, diverse, and pedestrian-orien- 
tated neighborhoods, in combination, can meaningfully influence how Americans travel. 0 1997 Elsevier 
Science Ltd 

1. INTRODUCTION 

A host of urban design philosophies-new urbanism, transit-oriented development, traditional 
town planning-have gained popularity in recent years as ways of shaping travel demand. All 
share three common transportation objectives: (1) reduce the number of motorized trips, what has 
been called trip degeneration; (2) of trips that are produced, increase the share that are non- 
motorized (i.e. by foot or bicycle); and (3) of the motorized trips that are produced, reduce travel 
distances and increase vehicle occupancy levels (i.e. encourage shorter trips and more travel by 
transit, paratransit, and ride-sharing). An expected outcome of degenerating trips and weaning 
people from their cars, proponents hope, will be a lessening of the negative consequences of an 
automobile-oriented society-namely, reductions in air pollution, fossil fuel consumption, and 
class and social segregation (Banister and Lichfield, 1995; Dittmar, 1995). 

New urbanists, neotraditionalists, and other reform-minded designers argue for changing three 
dimensions, or the 3Ds, of the built environmentdensity, diversity, and design-to achieve these 
objectives. While the effects of density on travel demand have long been acknowledged (e.g. 
Levinson and Wynn, 1963), the effects of diversity and design have just as long been ignored. This 
paper examines the connection between the 3Ds of the built environment and travel demand. 
Notably, it tries to sort through the relative influences of the three dimensions after controlling for 
other explainers, like travellers’ demographic characteristics. It does this mainly by applying the 
technique of factor analysis to gauge the relative influence of each dimension as well as their col- 
lective impacts. The paper tests the propositions of the new urbanists and others that compact 
neighborhoods, mixed land uses, and pedestrian-friendly designs ‘degenerate’ vehicle trips and 
encourage residents to walk, bike, or take transit as substitutes for automobile travel, particularly 
for non-work purposes. 
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The underlying hypotheses addressed in this paper are outlined in Table 1. One, higher densities, 
richly mixed land uses, and pedestrian-friendly designs are thought to lower the rates of vehicular 
travel (i.e. trip degeneration), expressed in this paper as daily personal vehicle miles traveled per 
household. Two, these three dimensions are thought to be positively associated with the choices of 
shared-ride, transit, and non-motorized modes, what we call non-personal vehicular travel. Also, 
the 3Ds are thought to be associated with higher occupancy levels for personal vehicle travel (i.e. 
higher incidence of non-single occupant vehicle (non-SOV) travel). Moreover, density, diversity, 
and design are postulated to increase non-personal vehicle (non-PV) and non-SOV travel for both 
work and non-work trips. In the case of non-work trips, more compact settings with neighbor- 
hood retail outlets and pleasant walking environments are thought to induce more foot and bicycle 
travel and short-hop transit trips, especially for purposes like personal-business travel (where there 
is less of a need for a car to haul purchases). And in the case of work trips, pedestrian-friendly 
environments and the presence of convenience stores near residences are expected to induce com- 
mute trips via transit and non-motorized modes. 

To test these hypotheses, we carry out statistical tests using variables that, individually and 
collectively, capture the three built environment dimensions for 50 neighborhoods in the San 
Francisco Bay Area. As used here, ‘built environment’ means physical features of the urban 
landscape (i.e. alterations to the natural landscape) that collectively define the public realm, which 
might be as modest as a sidewalk or an in-neighborhood retail shop or as large as a new town. 
Regardless of scale, however, all features of the built environment incorporate some elements or 
combinations of density, diversity, and design. Before presenting the research design and metho- 
dological approach to our study, it is instructive to briefly review some of the conceptual under- 
pinnings and relevant findings from past research on the relationship between built environments 

and travel demand. 

2. CONCEPTUAL FRAMEWORK 

Within the past decade, a considerable amount of research has been carried out, at varying 
degrees of depth and sophistication, on how built environments influence travel demand. While 
motivated by movements like the new urbanism and transit village planning, the theoretical 
underpinnings of these works lie in traditional utility-based theories of urban travel demand. At 
the most rudimentary level, travel demand is a ‘derived’ demand in the sense that trips are made 
and distributed on the basis of the desire to reach places, whether office buildings, ballparks, or 
shopping centers. The characteristics of these places-i.e. their land uses, densities, design fea- 
tures--can affect not only the number of trips generated, but also modes and routes of travel. 
While characteristics of origindestination interchanges, like the relative prices and service quali- 
ties of competing modes, are known to affect travel demand, so are features of the trip ends (i.e. 
origins and destinations) themselves-features that we have defined as the 3Ds of the built envir- 
onment. 

Normative explanations of how built environments can shape travel behavior, framed around 
traditional utility-based travel demand theories, can be found in Handy (1992) and Cervero and 
Seskin (1995). Take the dimension of density, for instance. Compact neighborhoods can degener- 
ate vehicle trips and encourage non-motorized travel in several ways. One, by bringing origins and 
destinations closer together, there become many more opportunities for leaving one’s car at home 
and walking or cycling to a destination. Moreover, compact neighborhoods tend to have less 
parking, better quality transit services, wider mixes of land uses, and larger shares of low-income 

Table 1. Hypothesized direction of relationships between dimensions of built environments and travel demand 

Dimension of built environments Influences on 

Non-SOV/non-PV mode choice’ 

Vehicle trip rates Non-work trips Work trips 

Density 
Diversity 
Design 

- + + 
_ + + 
- f + 

l SOV = single-occupant vehicle; PV = personal vehicle. 
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households, all factors that reduce car usage. Disentangling the relative contributions of these 
elements to trip-making requires far richer data than have been available to date; consequently, 
density is understood to be associated with these other potential explainers and together they are 
thought to reduce automobile travel. In view of data and methodological limitations (Handy, 
1991; Crane, 1996), inquiries into the influences of built environments on travel behavior are 
necessarily tentative and exploratory. And since complete statistical control is never fully intro- 
duced, any relationships that are uncovered are necessarily associative rather than causal. The 
work we present aims to not only refine our understanding of these associations, but also to extend 
methodological approaches to measuring different attributes of the built environment and their 
relationship to travel demand. 

Explanations of how other dimensions of built environments, like diversity and design, influence 
travel demand follow similar logics. That placing convenience stores within neighborhoods can 
produce walk and cycling trips that substitute for external (i.e. out-of-neighborhood) vehicular 
trips is intuitive (Handy, 1993; Cervero and Radisch, 1996). So is the notion that siting restau- 
rants, shops, and service outlets in suburban office settings can induce workers to ride-share by 
making midday destinations more conveniently reached, thus reducing the need to have a car on- 
site (Cervero, 1989). Perhaps less obvious is the possible benefit of in-neighborhood retail shops on 
residents’ commuting mode. One view holds that conveniently siting grocery shops and the like 
between transit stops and residential neighborhoods can encourage transit commuting by allowing 
patrons to link work and shop trips, via foot, when en route to home in the evening. 

The effects of design treatments, like aligning shade trees along sidewalks and siting parking lots 
in the rear of stores, on travel demand are thought to parallel the influences of density and diver- 
sity. Design schemes can not only make destinations more accessible and conveniently reached by 
foot (as with siting store entrances near curbsides and parking in the rear), but can also reward 
pedestrians, cyclists, and transit riders with amenities (like shade trees and civic squares). Some 
charge that such designs are not really amenities so much as basic provisions, i.e. providing 
pedestrians and cyclists with the same level of facilities provided to motorists, thus ‘levelling the 
playing field’. Although many new urbanists are committed to reducing the dominance of the 
private car in America’s suburbs, a stronger motivation seems to be the desire to increase subur- 
bia’s social and cultural diversity while also instilling a sense of community pride and attachment 
(Calthorpe, 1994; Downs, 1994; Katz, 1994). While charges of social engineering and environ- 
mental determinism have been levelled at these and other urban design movements, from the per- 
spective of travel-demand theory, the physical make-up of places (i.e. trip origins and destinations) 
is unquestionably relevant to understanding travel behavior. Just as utility theory says that travel 
time differentials between car and bus can influence mode choice between origindestination pairs, 
it also tells us that a dense, mixed-use, pedestrian-friendly downtown destination is more likely to 
induce transit riding than a sprawling, single-use, auto-oriented suburban one. That is, character- 
istics of trip ends, and not just trip interchanges, influence travel behavior and choices. 

3. PRIOR RESEARCH 

Research generally supports the theories of how built environments shape travel demand, 
though to varying degrees and with not altogether consistent findings. Much of the work to date 
has focused on how the designs of large employment sites influence commute trips. Consistent 
with theory, studies agree that pedestrian-oriented designs and on-site stores and services, like 
banks and shops, encourage non-auto travel. In a study of 59 large-scale employment centers in 
the U.S., Cervero (1989) found centers with on-site and nearby retail services averaged relatively 
high rates of midday walk travel and low rates of drive-alone commuting. More recently, Cam- 
bridge Systematics (1994) explored the connection between the work environment and workers’ 
commute modes (across 330 companies in the Los Angeles region that had introduced transpor- 
tation demand management measures in response to Regulation XV air quality mandates). The 
study found that transit captured 6.4% of commute trips in ‘diverse-mix’ employment areas, vs 
2.9% of commute trips in ‘no-mix’ areas. Transit shares were 3.6 percentage points higher in areas 
with ‘convenience-oriented services’ vs those without. 

While studies at the residential ends of trips have shown population density to be an important 
predictor of travel choice (Pushkarev and Zupan, 1977; Newman and Kenworthy, 1989; Dunphy 
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and Fisher, 1996) only recently have other dimensions of the built environment been probed. 
Handy (1993) and Fehr and Peers Associates (1992) found substantially higher rates of foot and 
transit travel in traditional communities vs conventional suburban subdivisions of the San Fran- 
cisco Bay Area, though factors like differing transit service levels were not controlled for. Recent 
studies of travel in Broward County, Florida (Ewing et al., 1994) and Washington’s Puget Sound 
(Frank and Pivo, 1994) further suggest mixed-use neighborhoods induce shorter, within-neigh- 
borhood travel. Ewing (1994) has argued that many of the benefits of density may in actuality be 

attributable to mixed land uses since the two usually co-exist. 
Two studies which are particularly germane to our analysis-because they focused on the San 

Francisco Bay Area, examined multiple descriptors of the built environment, and introduced sta- 
tistical controls-are those by Holtzclaw (1990, 1994) and Kitamura et al. (1994). Using data from 
smog-check odometer readings, Holtzclaw (1990) found vehicle miles traveled (VMT) per capita to 
be around two-thirds lower in dense, mixed-use settings than in suburban ones. A follow-up study 
of 28 Californian communities further substantiated these findings-statistical models suggested 
that VMT per household fell by one-quarter as densities doubled, and by around 8% with a doub- 
ling of transit services, controlling for factors like household income (Holtzclaw, 1994). Kitamura 
et al. (1994) concluded “neighborhood characteristics add significant explanatory power when 
socio-economic differences are controlled for”; however, the use of simple dummy variables to 
signify the presence of mixed land uses and pedestrian/bicycle facilities and respondents’ percep- 
tions of neighborhood features could explain why most of their built environment variables were 

insignificant. 
The recent Land Use-Transportation-Air Quality (LUTRAQ) study conducted by Parsons 

Brinckerhoff Quade and Douglas, Inc. (1993) for the Portland, Oregon region has been one of the 
more ambitious efforts to date to gauge the travel impacts of ‘pedestrian friendliness’. In the 
LUTRAQ study, neighborhoods were subjectively rated on a I-5 scale by a panel of experts in 
terms of: (1) ease of street crossings; (2) sidewalk continuity; (3) local street characteristics (grid-iron 
vs cul-de-sac patterns); and (4) topography. While simple correlations showed that neighborhoods 
with highly-rated pedestrian environments averaged more transit trips, the ‘pedestrian-friendliness’ 
variable provided only marginal explanatory power in a regression model of neighborhood VMT. 

4. DILEMMAS IN STUDYING THE TRANSPORT-LAND USE LINK 

Researchers face a number of dilemmas in probing the links between the built environment and 
contemporary travel. One, transportation and land-use data are usually compiled by separate 
entities for different purposes and as a result are not always compatible. To study non-work travel 
at a disaggregate level, one has to turn to metropolitan travel surveys. (In contrast, disaggregate 
work-trip data are more readily available from the decennial census.) In the case of the San 
Francisco Bay Area, the most extensive regional travel survey is the Bay Area Travel Survey 
(BATS), last conducted by the Metropolitan Transportation Commission in 199&1991.* 
Unfortunately, there are often too few travel-diary records for individual census tracts to 
support any rigorous modeling of how the built environments of those tracts shape travel demand. 
BATS, as with most metropolitan surveys, was conducted to support regional travel-demand 
forecasting, and thus is meant for macro-level, rather than neighborhood-scale, analyses. While 
census tracts can be combined to produce enough trip records to support modeling, this often ends 
up creating very large subareas, larger than what traditionally represents a residential neighbor- 
hood. 

Another barrier to carrying out neighborhood-scale studies is the absence of rich, tract-level 
data on built environments. The U.S. census contains tract-level data on the densities, housing, 
and socio-demographic characteristics of tracts, though very little is available on specific land-use 
compositions or urban design features. In the San Francisco region, the Association of Bay Area 
Governments (ABAG) has a digital database on dominant land uses for hectare grid cells for the 
entire nine-county Bay Area, and we relied on these data for our study. However, there are no 

*The 1990-1991 BATS compiled detailed single- and multiple-weekday travel-diary data for persons five years of age and 
older for 9359 Bay Area households. In addition, personal and household data were compiled and cross-coded for each 
trip record. 
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comprehensive databases that gauge the quality of walking environments, the sizes and types of 
commercial activity centers, parking supplies, landscaping provisions, and other detailed features 
that are thought to influence travel behavior, especially for more discretionary, non-work trips. 

Even with larger, more comprehensive databases, it is questionable whether many built envir- 
onment variables will show up as statistically significant. This is partly because of the colinearity 
between factors like neighborhood densities, mixed use levels, and pedestrian amenities-i.e. rela- 
tively dense neighborhoods tend to have a greater variety of land uses, shorter blocks, grid-like 
street patterns, sidewalk networks, and so on. Moreover, relatively coarse indices are normally 
used to measure built environments, often relying on subjective measures, such as ordinal ‘pedes- 
trian environmental factors’ (Parsons Brinckerhoff Quade and Douglas, Inc., 1993) or simple 
dummy variables and respondents’ perceptions of neighborhood quality (Kitamura et al., 1994). 
In contrast, most control variables, such as household incomes and travel distances, are measured 
on a continuous ratio scale and thus enjoy a predictive advantage. Measurement invariably 
remains imperfect regardless of how many variables are used to capture elements of the built 
environment. For example, while the presence of street trees might serve as a proxy for an attrac- 
tive walking corridor, the trees’ value in providing shade might be limited to certain seasons and 
times of day that do not necessarily correspond to the periods when travel-diary data were com- 
piled. And, of course, it could very well be that some factors, like urban design, indeed have little 
bearing on fundamental travel choices. In a study of transit-supportive designs across a number of 
U.S. cities, Cervero (1993, p. 220) concluded that “micro-design elements are too ‘micro’ to exert 
any fundamental influences on travel behavior; more macro-factors, like density and the compar- 
ative cost of transit vs automobile travel, are the principal determinants of commuting choices”. 

5. RESEARCH DATA BASE 

To address the research questions posed, it was necessary to compile data from different sources 
and merge them into a single database. Travel data and socio-economic data were obtained from 
the 199&1991 BATS and, for 50 sampled neighborhoods, data on land uses were compiled from 
field surveys, the ABAG land-use inventory, and the Census Transportation Planning Package 
(CTPP). Data on the design features of neighborhoods, such as block lengths and sidewalk pro- 
visions, were compiled for the 50 neighborhoods based on field surveys. 

In building a database for this research, every person trip was treated as a data record.* Socio- 
economic and household data (from BATS) compiled for the person making the trip were 
appended to each record, as were the built-environment characteristics of the person’s home 
neighborhood (from the census, ABAG land-use data, and field surveys). For several variables 
(e.g. employment density, accessibility indices), characteristics of the person’s destination were 
likewise appended to each travel record. Thus, the following data were available for each person 
trip record:+ 

Travel data-from BATS (e.g. mode, trip length); 
Personal data - from BATS (e.g. age, gender); 
Household data- from BATS (e.g. number of persons, income); 
Land-use duta- from census (e.g. population density), CTPP (e.g. employment density), 

ABAG (e.g. dominant land uses), and field surveys (e.g. uses in activity centers); 

*The BATS travel diaries typically recorded all trips made by each person above 5 years of age on a particular survey day. 
For travel demand modeling purposes, trips are treated as independent events both across trip-makers and members of 
households. Virtually all travel demand modeling work to date has invoked this assumption, usually implicitly, as a 
concession to the shortcomings, both theoretically and methodologically, of contemporary approaches for measuring 
and modeling urban travel behavior. 

‘Tract-level data on population densities were obtained from the U.S. census, Summary Tape File 3-A. Data on employ- 
ment (e.g. number of jobs, occupational breakdowns, densities) at place of employment were obtained from the CTPP, 
Part II, for the San Francisco-Oakland-San Jose MSA. ABAG land-use data were used in developing indexes of land- 
use diversity. Data on transportation supplies, such as the lineal feet of freeway within or bordering a tract and number 
of intersections, were compiled from Thomas Brothers Maps: Alameda-Conrra Cosfa Counties, 1994. Data on local bus 
services, such as revenue miles of bus service and average headways, were acquired from route maps and printed sched- 
ules provided by local transit operators (e.g. SamTrans, AC Transit). 
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Design data-from field surveys (e.g. block length, presence of street trees) and regional 
maps (e.g. proportion of intersections that are four-way);* and 

Transportation supply data-from field surveys (e.g. availability of on-street parking), 
regional maps (e.g. distance to nearest freeway interchange), and transit schedules (e.g. 
transit service intensity). 

Overall, then, three grains of data were used in the analysis-person information (trips, socio- 
demographics like age); household information (vehicles per person in household); and tract 
information (density and land use). All were tied to the most disaggregate level-the individual trip- 
maker. This meant there was less variation across the household-level variables, and even less vari- 
ation across the built environment and urban design variables (i.e. only 50 possible data values). 

6. STUDY CASES 

Because of the need to collect fairly detailed and original data on the built environment, we 
limited our research to 50 neighborhoods in the San Francisco Bay Area which corresponded to 
census tracts. Having at least 50 neighborhoods was viewed as essential in recording enough vari- 
ation in the built environment to support reasonably sophisticated modeling. Each neighborhood 
consisted of either a single census tract or a pair of adjoining tracts.+ 

Neighborhoods were selected to ensure each had at least 20 BATS household records and that, 
collectively, they were reasonably representative of built environments across the region. In light 
of the limited travel diary data for most census tracts, a purely random sample of census tracts was 
not possible.: However, since BATS household records were randomly sampled, linking our data 
cases to BATS ensured a high degree of randomness among selected neighborhoods. 

As shown in Table 2, the selected neighborhoods were fairly representative of the region at 
large, though they tended to be slightly wealthier and had slightly smaller household sizes than the 
Bay Area average. Also, as shown in Fig. 1, the selected neighborhoods were geographically 
spread throughout the region, with at least one case from each of the nine Bay Area counties.5 The 

Table 2. Comparison of mean household characteristics of Bay Area and Sample Cases, 1990 data 

Nine-county 
Bay Area 

50 neighborhood Percentage 
cases* difference 

Mean household income, annual 
Mean household size (no. of members) 
Mean household density (households per residential acre) 

S42,000+ $45,600 8.6 
2.591 2.41 7.5 
6.78t 6.32 7.3 

Sources: *Metropolitan Transportation Commission (1994) 1990-1991 Bay Awn Travel Survey. Metropolitan Transporta- 
tion Commission, Oakland, CA. Association of Bay Area Governments (1993) 1990 Land Use Summary. Association of 
Bay Area Governments, Oakland, CA. 
‘U.S. Census Bureau (1994) 1990 U.S. Census Summary: Social, Economic, and Housing Characteristics for California. U.S. 
Census Bureau, Washington, D.C. 
:Association of Bay Area Governments (1994) Projections ‘94. Association of Bay Area Governments, Oakland, CA. 

*The land-use and design data fell into three groups-general street data, non-residential land-use compositions, and resi- 
dential neighborhood characteristics. Because it was not possible to study every street section within a tract, a random 
sample of 20 block faces was selected for each tract, from which measures such as the average block length and sidewalk 
width were recorded. The field survey also placed particular attention on detailing characteristics of activity centers- 
liberally defined as any collection of retail or service land uses that either comprise a land area over 10,000 square feet, or 
consists of three or more stores that either adjoin or lie within 200 feet of each other along the same street, For the most 
part, activity centers contained neighborhood and community retail activities. A 100% inventory of all activity centers 
within each surveyed neighborhood was compiled. 

‘Not every household recorded non-work, home-based trips by adult family members. Thus, in instances where fewer than 
20 non-work trips were recorded for a tract, two adjoining census tracts were combined to produce at least 20 non-work, 
home-based trips. 

:A purely random sample could not be drawn since the majority of census tracts in the region had fewer than four house- 
hold BATS records. A purely random sample would have also likely generated many similar suburban tracts that have 
little variation in their built environments, thus inhibiting model estimation, 

)For each of the Bay Area’s nine counties, the number of neighborhoods that we studied (and households within them with 
surveyed BATS travel data) were: San Francisco-13 (191 households); Marin- (132 households); Alameda-7 (120 
households); San Mate-6 (105 households); Contra Costa-6 (86 households); Santa Clara-5 (95 households); 
Napa- (I 37 households); Sonoma-2 (50 households); and Solano-1 (20 households). 
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higher concentration of sampled neighborhoods in denser, built-up parts of the Bay Area, like San 
Francisco and Oakland, reflects these cities’ relatively high shares of regional population. 

7. STUDY VARIABLES 

The built environment variables compiled for this research sorted neatly into the ‘IDS’, and are 
listed in Table 3. While most of the selected variables related to density are similar to those used in 
prior studies (e.g. Holtzclaw, 1994; Frank and Pivo, 1994) our work incorporates many more 
measures of land-use diversity and urban design than most previous studies. Along the density 
dimension, besides population and employment density, accessibility is treated as an indicator of 

Sonoma County \ Napa County 1 Solano Countv ~~ -7 , 

Santa Clara County 
‘i_ :, ” -,-: ,‘,,L*.:- 

“.. ..i 
\ 0,. - aan Jose 

Fig. 1. Location of 50 case study neighborhoods, San Francisco Bay Area. 
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Table 3. Built environment variables 

I. Density 
l Population density: population per developed acre 
l Employment density: employment per developed acre 
l Accessibility to jobs: expressed in a gravity model form; for zone i, Accessibility Index = {C (jobs), exp[A rd}, where i = 

origin (residential) traffic analysis zone, j = destination traffic analysis zone, tb = travel time between zones i and j, and A 
= empirically derived impedance coefficient. The accessibility index serves as a proxy of relative proximity and com- 
pactness of land uses 

2. Diversity 
l Dissimilarit index: proportion of dissimilar land uses among hectare grid cells within a tract. For each tract, computed 

as: {[xi” C, (X,/8)1/K}, where K = number of actively developed hectare grid-cells in tract, and XI = I if land-use 
category of neighboring (i.e. abutting or caddy-corner) hectare grid-cell differs from hectare grid-cell j (0 otherwise). (See 
Fig. 2) 

l Entropy: mean entropy for land-use categories among hectare grid cells within a half mile radius of each hectare grid cell 
within a tract. For each tract, computed as: {& [J’J P,Jn(pjrJ]/ln(J)}/k where: pjk = proportion of land-use category j 
within a half-mile radius of the developed area surrounding hectare grid-cell k; j = number of land-use categories; and K 
= number of actively developed hectares in tract. The mean entropy ranges between 0 (homogeneity, wherein all land 
uses are of a single type) and I (heterogeneity, wherein developed area is evenly distributed among all land use categories) 

l Vertical mixture: proportion of commercial/retail parcels with more than one land-use category on the site 
l Per developed acre intensities of land uses classified as: residential; commercial; office; industrial; institutional; parks and 

recreation 
l Activity center mixture: (I) entropy of commercial land-use categories computed across all activity centers within a zone; 

(2) proportion of activity centers with more than one category of commercial-retail uses; (3) proportion of activity centers 
with stores classified as: convenience; auto-oriented; entertainment/recreational; offices; institutional; supermarkets; ser- 
vice-oriented 

. Commercial intensities, measured as per developed acre rates of: convenience stores; retail services; supermarkets; eater- 
ies; entertainment and recreational uses; auto-oriented services; mixed parcels 

l Proximities to commercial-retail uses: (I) proportion of developed acres within l/4 mile of: convenience store; retail-ser- 
vice use; (2) proportion of residential acres within l/4 mile of: convenience store; retail-service use 

3. Design 
l Streets: (I) predominant pattern (e.g. regular grid, curvilinear grid); (2) proportion of intersections that are: four-way 

(proxy of grid pattern); (3) per developed acre rates of: freeway miles within or abutting tract; number of freeway under- 
and over-passes; number of blocks (proxy for the grain of road net); number of dead ends and cul-de-sacs; (4) averages 
of: arterial speed limits; street widths 

l Pedestrian and cycling provisions: (I) proportion of blocks with: sidewalks; planting strips; street trees; overhead street 
lights; quadrilateral (i.e. rectangular or square) shape; bicycle lanes; mid-block crossings; (2) proportion of intersections 
with: signalized controls; (3) averages of: block length; sidewalk width; distance between overhead street lights; slope; 
pedestrian green lights at signalized intersections; (4) bicycle lanes per developed acre 

l Site design: proportion of commercial-retail and service parcels with: off-street parking; off-street parking between the 
store and curb; on-street front or side parking; on-site drive-ins or drive-throughs 

Sources: U.S Bureau of Census, Population and Housing, STF 3A; Census Transportation Planning Package, Parts I and 
II; ABAG, 1990 Land Use Summary; ABAG, Projection ‘94; field surveys; and regional maps. 

commercial intensity. As constructed here, it measures a neighborhood’s relative proximity to 
activities, and thus reflects relative compactness. In constructing accessibility indicators, numbers 
of jobs were used as measures of destination attraction, and travel times between tracts were esti- 
mated on an unloaded regional highway network for the Bay Area using the MINUTP network 
package. Steiner (1994) Ewing (1994) and others argue that density’s predictive value lies as a 
proxy for many difficult-to-measure variables that more directly affect travel behavior. Notably, as 
mentioned earlier, density is often associated with lower income households, limited parking sup- 
plies, more intensive bus services, and mixed land uses. Since these ‘other’ variables are directly 
controlled for in our analyses, we sought to isolate the individual effects of compactness in shaping 
travel demand. 

We opted for a fairly wide array of variables to capture the diversity dimension. As used in 
earlier research on suburban activity centers (Cervero, 1989) and more recently by Frank and Pivo 
(1994), entropy provides a 0-I index for gauging land-use heterogeneity.* While entropy quantifies 
the degree of mixing across land-use categories within a neighborhood, it is not a particularly good 
indicator of spatial inter-mixing at a finer grain, such as among parcels and city blocks. Accord- 
ingly, we developed a ‘dissimilarity index’ that gauges the degree to which uses abutting or 

*To avoid bias against smaller tracts, in which there is relatively little area to accommodate a variety of land-use types (e.g. 
in densely developed San Francisco, some tracts have as few as 7 hectares), and to better reflect spatial mixing within a 
local neighborhood, a ‘mean entropy’ index was constructed. 
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Central “C” hectare receives 98 
point for having tive of its eight 
neighboring hectares’ uses as distinct. 

Central “R” hectare receives 4/8 
point since four of the surrounding 
eight hectares are occupied by a 
different land-use. 

Fig. 2. Computation of the dissimilarity index 

diagonal to each hectare were different. As shown in Fig. 2, since one-eighth of a point is awarded 
for each of the adjacent hectares whose use differs from that of a particular hectare, the index 
varies between 0 and 1 when summed over and divided by the number of hectares in a tract. 
Supplementing both entropy and dissimilarity indices are variables that measure activity-center 
intensities, proximity to retail uses, and incidences of vertical land-use mixing within parcels. 

Most of the design variables listed in Table 3 were compiled from field surveys. Design variables 
related to characteristics of streets (e.g. incidence of four-way intersections as a proxy for grid-like 
patterns), pedestrian and cycling provisions (e.g. share of block faces with sidewalks), and site 
design (e.g. proportion of retail parcels with front- and side-lot parking, reflecting wide setbacks 
and ‘pedestrian-unfriendly’ designs). Because design features can vary significantly within neigh- 
borhoods, for most variables used, we randomly sampled 20 block faces within each neighborhood 
to derive proportions and averages. Measuring ‘average’ design features of neighborhoods was 
necessitated by the need to tie these data to ‘average’ statistics on travel demand, density, diversity, 
and socio-economic characteristics for each of the 50 neighborhoods. While using smaller geo- 
graphic units of analysis (e.g. city-block groupings) would have reduced the risks of aggregation 
bias, this would have been at the expense of reducing trip records to a few or none. As noted, 
empirical research into transportation-land use relationships necessarily involves trading off 
between the amount and precision of data. 

The control variables used in our research are listed in Table 4. Standard demographic and 
household variables associated with travel demand, like possession of a driver’s license and 

Table 4. Control variables 

I. Socio-demographics of trip-maker 

l Age 
. Gender: male status 
l Employment: full-time or part-time status; professional occupation 
l Race and ethnicity: racial-ethnic category; Caucasian status 
. Possession of driver’s license 

2. Household of trip-maker 
l Size: number of members; number of persons under 5 years of age (proxy for pre-school child dependency); number of 

persons 5 years of age and over (proxy for active household members) 
. Vehicle ownership: number of automobiles, trucks, vans, and motorcycles per household 
l Income 
l Housing tenure (own or rent) 

3. Transportation supply and services 
. Transit service intensity: route miles of peak-hour revenue service divided by developed area of tract 
l Distance to: nearest freeway-on ramp; nearest BART station; nearest commuter rail station; nearest light rail station; and 

nearest ferry landing 
. Proportion of commerciallretail parcels with: paid on-street parking; paid off-street parking 

4. Distance 
. Euclidean distance between centroids of trip’s origin and destination traffic analysis zones 
l Euclidean distance: to downtown San Francisco; downtown Oakland; downtown San Jose 

Sources: MTC, 1990-1991 Bay Area Travel Survey (BATS); U.S. Bureau of Census, Population and Housing, STF 3A; 
Census Transportation Planning Package, Parts I and II; field surveys; schedules, maps, and reports from local transit 
agencies; and regional maps 
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household income, were used. Transportation supply variables gauged each neighborhood’s tran- 
sit service levels, proximity to freeway interchanges and transit stations, and prevalence of paid 
parking. Lastly, all mode choice models controlled for trip distance. The Euclidean (or ‘airline’) 
distance of each trip was estimated using census tract centroid co-ordinates; a trip that did not 
leave a tract was assigned a distance of 0.20miles, which served as a minimum expected trip dis- 
tance. 

While the BATS data supplied numerous dependent variables for measuring travel demand, we 
concentrated on two that were most germane to our central research questions-vehicle miles 
traveled (VMT) by personal vehicles (e.g. automobiles, trucks, and vans) and mode choice. 
Because the great majority of trips within the region were by private automobile, mode choice was 
defined using simply binary distinctions-whether by a personal vehicle or not, and whether by 
single-occupant vehicles (SOV) or not.* 

Descriptive statistics for the built environment variables that, as shown in latter sections, proved 
to be the strongest predictors of travel demand are presented in Table 5. Basic statistics for 
dependent variables and control variables are summarized in Table 6. 

Table 5. Descriptive statistics for the built environment variables most associated with travel demand, across 50 neighbor- 
hood cases 

Mean Standard deviation Range 

Minimum Maximum 

Density 
Population per developed acre 
Employment per developed acre 
Accessibility Index (in 1000):’ 

to all jobs (via auto) 
to sales and services jobs (via walk) 

18.20 18.79 
5.96 7.20 

93.92 60.18 
0.55 0.46 

Diversify 
Dissimilarity index’ 0.13 0.08 
Mean entropy’ 0.32 0. I 1 
Per developed acre rates of number of: 

retail stores 
activity centers 
parks and recreational sites 

Proportion of commercial-retail parcels 
that are vertically mixed’ 

Proportion of residential acres within l/4 mile 
of convenience or retail store 

0.41 0.66 
0.01 0.02 
0.01 0.01 
0.27 0.24 

0.41 0.34 

Design 
Proportion of intersections that are four-way 
Proportion of blocks with: 

sidewalks 
planting strips 

0.37 0.28 

overhead lights 
flat terrain ( < 5% slope) 
quadrilateral shape 

Block face length (feet) 
Sidewalk width (feet) 
Distance between overhead lights (feet) 
Proportion of commercial parcels with: 

paid parking 
side- or front-lot on-street parking 

0.78 0.26 0.10 I .oo 
0.42 0.30 0.00 0.95 
0.87 0.23 0.05 I .oo 
0.80 0.23 0.30 I .oo 
0.51 0.33 0.00 0.98 
579 I62 345 1079 
5.55 3.77 0.50 15.00 
222 II8 21 568 

0.16 0.28 0.00 0.82 
0.42 0.3 I 0.00 1.00 

4.38 141.70 
0.18 44.10 

4.53 252.25 
0.00 2.31 

0.00 0.30 
0.14 0.52 

0.00 3.25 
0.00 0.13 
0.00 0.04 
0.00 I .oo 

0.00 1.00 

0.06 1.00 

*See Table 3 for definition of variable. 

*It should also be pointed out that regional travel surveys, like BATS, rarely provide a complete portrait of travel, in part 
because sample data are normally compiled for a particular time of year and truly random samples are nearly impossible 
to collect. Moreover, one-day travel surveys likely undersample occasional trips, like walking and cycling, that occur 
most often on weekends. Any under-reporting of non-motorized travel invariably constrains analyses of how built 
environments influence walking and bicycling trips. 
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Table 6. Descriptive statistics for dependent variables and control variables most associated with travel demand 

Mean Standard deviation Range 

Minimum Maximum 

Dependent variables 
Daily personal vehicle miles traveled per household 

(divided by vehicle occupancy):’ 
all trips 
non-work trips 

Proportion of total home-based trips by:+ 
non-personal vehicle 
non-single-occupant vehicle 

Proportion of non-work home-based trips by:+ 
non-personal vehicle 
non-single-occupant vehicle 

Proportion of personal business home-based trips by 
non-personal vehicle’ 

Proportion of work home-based trips by 
non-personal vehicle+ 

Socio-demographics of trip-maker 
Age, years: 
Proportion male: 
Proportion employed: 
Proportion white: 
Proportion with drivers licenses: 

Household characteristics 
No. of members:* 

total 
5 years and older 

Annual income, dollars* 
No. of autos, vans, and trucks* 

Transportation supply and distance 
Transit service level (revenue route 

miles per developed area)b 
Trip distance, in miles, all trips: 

27.13 29.64 
21.47 28.94 

0.15 0.36 
0.46 0.50 

0.18 0.39 
0.66 0.49 

0.14 

0.09 

38.7 17.1 5.0 90.0 
0.50 0.50 0.0 I .o 
0.66 0.47 0.0 1.0 
0.80 0.40 0.0 I.0 
0.87 0.43 0.0 I.0 

2.4 I 1.27 1.00 8.0 
2.22 1.14 1 .oo 8.0 

47,740 31,126 2500 175,000 
1.78 1.04 0.0 6.0 

0.06 0.08 0.00 0.42 

5.29 5.24 0.20 48.42 

0.34 

0.27 

0.00 
0.00 

0.00 
0.00 

0.00 
0.00 

0.00 

0.00 

228.52 
228.52 

I .oo 
1 .oo 

I .oo 
I .oo 

1 .oo 

1.00 

*Measured across all surveyed households. 
‘Measured across all trips within trip category. 
iMeasured across all trips. 
SMeasured across 50 case neighborhoods. 

8. RESEARCH APPROACH AND METHODS 

8.1. Measuring incremental predictive power 

In the analyses that follow, multiple regression was used to predict personal vehicle miles of 
travel and binomial logit analysis was used to predict the probability of a person traveling by a 
non-personal-vehicle or non-SOV mode. ‘Base’ models were initially estimated wherein only con- 
trol variables were used as predictors. Statistically significant variables related to the built envir- 
onment were then added to the base models to produce what we call ‘built environment’ models. 
Variables, including factor scores, were stepped into models based on their incremental explana- 
tory power. Efforts were made to ensure at least one variable or factor related to each of the three 
dimensions entered each built environment model. Comparisons of incremental increases in the 
models’ predictive powers revealed the explanatory significance gained by adding the dimensions 
of the built environment, based on the F statistic produced from the following formula (Chatterjee 
and Price, 199 1): 

[SSE(BM) - SSE(BEM)]/(I, + 1 - k) 

SSE(FM)/(n - p - 1) (1) 

where SSE= sum of squared errors; BM = base model; BEM = built environment model; 
k=number of predictors in base model; p = number of predictors in built environment model; 
n = sample size. 
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It should be noted that the predictive models are based largely on characteristics of trip ends 
(mainly the residential end) vs characteristics of trip interchanges (e.g. comparative prices and 
travel times of modes). However, some of the included variables, notably accessibility indexes and 
trip distance, were assumed to capture, and therefore control for, characteristics related to the 
interchange portion of trips. Trip distance, for instance, might be considered to be an appropriate 
control and proxy to the degree that travel-time differentials between, say, automobiles and bus 
transit are proportional to lengths of trips. 

8.2. Factor analysis 
As noted, a premise of our research is that built environments can be described principally along 

three main dimensions-density, diversity, and design. As suggested in Table 3, each dimension 
can be expressed by different variables, no one of which, alone, fully portrays that dimension, but 
which together more completely characterize the dimension. The design dimension, in particular, 
is a fairly qualitative concept that almost defies measurement and certainly requires more than a 
single variable to capture its full complexity and many subtleties. In light of the need to use sets of 
variables to capture the many-sided dimensions of built environments and to allow for colinearity, 
the multivariate technique of factor analysis was used. 

Factor analysis creates a relatively small number of underlying factors that can be used to 
represent relationships among sets of many interrelated variables (Dunteman, 1984). In our case, it 
allowed variables like ‘average sidewalk width’, ‘incidence of signalized street crossings’, and 
‘intensity of planting strips and street trees’ to be linearly combined to represent the dimension of 
‘pedestrian-oriented design’. As such, factor analysis helps elucidate some of the underlying, 
though not always observable or readily measurable, dimensions of the built environment. It 
enriches the analysis since multicolinearity among the many descriptors of the built environment 
can conceal the consequences of their individual contributions to travel demand. While factor 
analysis has been used to study the effects of employment centers’ built environments on travel 
demand (Cervero, 1989; Cambridge Systematics, 1994) we are not aware of its use to date in 
studying how physical features of residential neighborhoods shape travel behavior. 

We contend that it is futile to attempt to isolate the unique contribution of each and every 
variable that measures some fine aspect of the built environment. Quite simply, extreme multico- 
linearity prevents this in a statistical sense. As already pointed out, neighborhood attributes like 
compactness, diverse land uses, and pedestrian provisions co-exist. According to factor analysis 
principles, variables are often simply empirical manifestations of deeper dimensions, what Thur- 
stone (1947), one of the founders of factor analysis, called ‘deep structure’. 

Initially, we sought to extract three underlying factors--density, diversity, and design.* Not all 
of the candidate variables representing these factors (shown in Table 3) ended up being used in the 
final extraction because some had low and indecipherable loadings. Based on an oblique (non- 
orthogonal) rotation of initial extracted factors, two intuitive and interpretable factors were 
extracted based on the inputs of 12 built environment variables.? These two factors accounted for 
around two-thirds of the total variation in these 12 variables; in other words, there was only 
around a 34% loss in information incurred by the 83% reduction in the number of ‘variables’ 
from 12 to 2. 

For ease of interpretation, variables in Table 7 are listed in order of the size of their factor 
loadings (i.e. coefficients), first on factor 1, then on factor 2. Also, only those loadings higher than 
0.30 are shown. From the loadings, it is clear that the first factor, which accounts for 47.6% of the 
total variation, represents intensity of land uses and thus captures the density dimension. Based on 
both the size and signs of loadings, one sees that intensity variables have been grouped to represent 
cases with: large numbers of retail stores, activity centers, and public parks per developed acre; 
high population densities; numerous shop-related destinations within walking distance (i.e. com- 
pactness); and closeness of public amenities like overhead street lights. 

The second factor, explaining about 18% of the variation, clearly captures the design dimension, 
and more specifically, walking quality, of the sampled neighborhoods. It reflects the commonality 

*Since our research focused on how the built environment shaped travel demand, factor analysis was carried out only for 
built environment, not control, variables. 

‘Oblique rotation was used because the factor dimensions themselves (e.g. density and design) were correlated. From the 
factor structure matrix, the correlation of the intensity factor and the design factor was 0.34. 
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Table 7. Factor loadings for intensity and walking quality factors, based on characteristics of 50 case neighborhoods 

Factor loadings on 

Intensity factor Walking quality factor 

Retail store density 0.954 
Activity center density 0.949 
Retail intensity 0.874 
Walking accessibility 0.802 
Park intensity 0.806 
Population density 0.796 

Sidewalk provisions 0.851 
Street light provisions 0.816 
Block length -0.746 
Planted strips 0.728 
Lighting distance -0.724 
Flat terrain 0.464 

Summary 
65.5% of variation of 12 variables explained by two factors, using oblimin (oblique) rotation-47.6% by the intensily 
factor and 17.9% by the walking quality factor. 
Factor loadings under 10.301 are not presented. 

Variable definitions 
Retail store density=number of retail stores per active developed area (in acres), wherein active developed area excludes 
open space, forests, vacant land, cemeteries, large recreation sites, and public infrastructure space; retail represents any 
commercial parcel where goods are sold, including convenience stores, supermarkets, restaurants and eateries, general 
merchandise stores, specialty stops, and entertainment and recreational-oriented establishments. 
Activity center density = number of activity centers per developed area (in acres), wherein an activity center is defined as any 
collection of retail or service land uses that either comprise a land area over 10000 square feet, or consists of three or more 
stores that either adjoin or lie within 200 feet of each other along the same street. 
Retail intensity=proportion of block (polygon) faces with retail-land uses, wherein a block face is the frontage of a block 
that is bounded on all sides by an intersecting street. 
Walking accessibility= relative proximity to sales and service jobs (reflecting activities within a neighborhood that are likely 
to attract foot travel), measured as: AI;= C (sales and service industry jobs), (exp[-0.19-1.52(walk travel time, in min- 
utes),,]}, where AI = accessibility index, i = origin (residential) traffic analysis zone, j= destination traffic analysis zone, walk 
travel time is assumed to equal automobile (centroid-to-centroid) travel time multiplied by 8, and intrazonal walk trips are 
assumed to take 8 min (Levinson and Kumar, 1995). 
Park intensity = Number of local and regional parks per developed area (in acres), including open space of more than 20 acres. 
Population density= Population per developed area (in acres). 
Sidewalk provisions = Proportion of block faces with paved sidewalks over the full length. 
Street light provisions = Proportion of block faces with overhead street lights. 
Planted strips=Proportion of block faces with planted strips between the street curb and sidewalk. 
Block length = Mean distance (in feet) of block faces. 
Lighting distance=Mean distance (in feet) between overhead street lights along block faces. 
Flat terrain = Proportion of block faces with ‘flat’ terrain ( < 5% slope). 

among neighborhoods which have: sidewalk and street light provisions; plentiful planted strips; 
short average block lengths and distances between street lights; flat terrain; and high walking 
accessibility to neighborhood shops. 

Overall, factor analysis was successful in providing a multi-variable description of two of the 
underlying dimensions--density and design-of the 50 sampled neighborhood built environments. 
The extracted factors and their relationships to original variables are logical and interpretable. 
Additionally, oblique rotation accounted for intercorrelation among the two factors themselves, 
i.e. many cases with high intensity scores also had high walking quality scores. 

9. STUDY FINDINGS 

9.1. Trip rates 
The measure of vehicular trip rate used in this analysis was personal vehicle miles traveled per 

household. This represents daily mileage of all household members via private automobile, van, 
truck, motorcycle, or taxicab/limousine. Thus, this measure excludes public transit and non- 
motorized (walking, bicycling) travel. The measure is adjusted for vehicle occupancy, i.e. two 
household members traveling together by car over a 5-mile distance represents 5, not 10, personal 
vehicle miles of travel. The expectation, of course, is that density, diversity, and pedestrian-orien- 
ted design should lower personal vehicle trip rates, that is, ‘degenerate’ trips. 
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Both ‘base’ and ‘built environment’ models were produced for total trips (Table 8) and non- 
work trips (Table 9). For the total trip model, when controls-number of workers and vehicles,* 
annual income, and transit service levels in the neighborhood-are introduced, 14.1% of the vari- 
ation in VMT is explained. The signs of control variables are consistent with a priori expectations, 
e.g. personal VMT falls with transit service levels. For the expanded model, neither of the built 
environment factors was a reasonably significant predictor of total VMT; rather, only two vari- 
ables-accessibility (as a proximity and compactness measure) and quadrilateral patterning of 

blocks (as an indicator of grid-like design)-added significant marginal explanatory power. And, 
somewhat surprisingly, quadrilaterals were positively associated with personal VMT, perhaps 
reflecting some of the marginal advantages of facilitating vehicular traffic flows with regularity in 
block patterns. In fact, the results suggest a neighborhood with all rectangular or square blocks 
could be expected to average nine more daily personal vehicle miles traveled per household than 
one with no quadrilateral blocks, all else being equal. Rectangular blocks (and thus grid-like street 
patterns), it should be noted, likely facilitate driving only in large, superblock configurations; 
however, ‘average block size’ was too weak to enter the predictive model to reveal whether this 
was the case. It is also noteworthy that the density and design factors were not as powerful in 
explaining VMT as these primary explanatory variables, and thus did not enter the model. 

When personal VMT was examined for non-work trips, Table 9 shows one of the two extracted 
factors, inrensity, provided significant marginal explanatory power. This factor, along with a spe- 
cific indicator of site-level diversity, ‘vertical mixing’, and two measures of design, ‘four-way 
intersections’ and ‘quadrilaterals’, added around 5% explanatory power to the base model. The F 
statistic of model differences, moreover, was highly significant. As expected, people living in dense 

Table 8. Predictive models of daily personal vehicle miles traveled per household, all trips 

Dependent variable: Vehicle miles traveled in personal vehicles by all household members for all trips’ 

Base model Built environment model 

Coefficient Probability Coefficient Probability 

Explanarory variables 
No. of workers in household 
(full- and part-time, non-students) 
No. of automobiles and vans in household 
Annual household income, in $1000 
Transit service intensity’ 
Proportion of commercial parcels with paid parking 
Accessibility index: 
Proportion of neighborhood blocks that 

are quadrilaterals (i.e. with four straight 
sides, either square or rectangular) 

Constant 

Summary slalislics 

No. of cases 
R squared 

F statistic (probability) of model differences = 14.43 (0.000) 

5.316 0.000 
7.795 0.000 
0.033 0.294 

-9.682 0.487 
-0.049 0.991 

- 

14.82 0.112 9.758 0.003 

Base model Built environment model 

896 896 
0.141 0.171 

5.919 0.000 
6.184 0.000 
0.04 I 0.185 

-23.377 0.117 
-6.141 0.162 
-0.079 0.000 

9.861 0.003 

*Adjusted for (divided by) vehicle occupancy level, where personal vehicle is defined as an automobile, truck, van, motor- 
cycle, or taxi. 
‘Transit service intensity = Total route miles of revenue service over the 8-9 am peak period within the tract (or along its 
borders), divided by developed active area (in acres) of tract, measured as:{ 60 [Ci (M,IH,)]}/A,}, where M=route miles of 
revenue service within or bordering tract, from 8-9 am, H=average headways of bus routes within tract, A =developed 
active area, in acres (e.g. excluding public parks, vacant land, cemeteries, public infrastructure space, etc.), and i= origin 
(residential zone). 
ZAccessibility index, zone i= {c (total jobs), exp[-0.4-0. I5 (automobile travel time, in minutes),]}/lOOO, where i= origin 
(residential) traffic analysis zone, j= destination traffic analysis zone, and intrazonal travel time is assumed to be 3 min; 
index is factored by a constant value of 1000 (Levinson and Kumar, 1995). 

*The relationship between control variables like vehicle ownership levels and built environment variables could be endo- 
genous, e.g. compact settings reduce vehicle ownership. However, the availability of cross-sectional data precluded any 
efforts to simultaneously estimate equations to control for possible estimation biases. If the influences of built environ- 
ments on vehicle ownership levels were explicitly accounted for in model estimation, the built environment variables 
would likely emerge as even more significant explainers since they most likely modify vehicle ownership in ways consis- 
tent with their expected impacts on travel behavior. 
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neighborhoods featuring within-building mixing (e.g. offices and residences above ground-floor 
shops) and four-way intersections averaged significantly less personal VMT. All other things held 
constant, Table 9 reveals: a neighborhood where all retail stores are vertically mixed vs one where 
no retail stores are vertically mixed averages 11 .l fewer personal VMT per household; and one 
with all four-way intersections vs one with only three-way intersections averages 32 fewer personal 
VMT per household each day. The co-existence of ‘four-way intersections’ and ‘quadrilaterals’ in 
the model suggests that while regularity in block patterns might be conducive to automobile 
driving in built-up areas, the existence of numerous four-way intersections encourages walking and 
other non-motorized trips by providing for the conditions of controlled street crossings and more 
access points. 

Overall, the premises of vehicle-trip degeneration, more frequent non-motorized trip-making, 
and shorter motorized trips provided by compact, mixed-use, pedestrian-friendly development are 
supported by the estimated trip-rate models. Thus, experiences in the San Francisco Bay Area lend 
support to the contentions of new urbanists and other proponents of traditional neighborhood 
designs though, clearly, design treatments, in and of themselves, fail to powerfully influence vehicle 
trip rates. 

9.2. Non-work mode choice 
9.2.1. Non-SOV model. Traditional neighborhoods are also thought to reduce auto-depen- 

dency, particularly drive-alone travel. For non-work trips, the model results in Table 10 largely 
support this, though contributions of built environment variables to SOV reductions were fairly 
modest, adding only a percentage point in explanatory power (which, nonetheless, was a statisti- 
cally significant increase). In the built environment model, both the intensity and pedestrian 
quality factors entered as reasonably significant predictors. The positive signs on both factors 

Table 9. Predictive models of daily personal vehicle miles traveled per household, non-work trips 

Dependent variable: Vehicle miles traveled in personal vehicles by all household members for non-work home-based trips’ 

Explanatory variables 
No. of persons in household over 4 years of age 
No. of workers in household (full- and part-time, 

non-students) 
No. of automobiles and vans in household 
Transit service intensity+ 
Intensity factor: 
Proportion of parcels with vertical mixing3 
Proportion of intersections that are four-way 

(e.g. not T or Y intersections) 
Proportion of neighborhood blocks that are 

quadrilaterals (i.e. with four straight sides, 
shaped as either squares or rectangular) 

Constant 

Base model 

Coefficient Probability 

1.499 0.123 
3.034 0.014 

6.953 0.000 
-72.498 0.000 

- 

5.918 0.009 

Built environment model 

Coefficient Probability 

1.072 0.107 
4.053 0.001 

5.752 0.000 
-18.975 0.250 

-3.450 0.002 
-11.209 0.013 
-34.343 0.000 

19.509 0.000 

9.970 0.968 

Summary starislics Base model Built environment model 

No. of cases 904 868 
R squared 0.154 0.203 

F statistic (probability) of model differences = 13.51 (0.000) 

*Adjusted for (divided by) vehicle occupancy level, where personal vehicle is defined as an automobile, truck, van, motor- 
cycle, or taxi. 
‘Transit service intensity=Total route miles of revenue service over the 8-9 am peak period within the tract (or along its 
borders), divided by developed active area (in acres) of tract, measured as:{ 60 [C,(M$H,)]}/A,}, where M= route miles of 
revenue service within or bordering tract, from 8-9 am, H = average headways of bus routes within tract, A = developed 
active area, in acres (e.g. excluding public parks, vacant land, cemeteries, public infrastructure space, etc.), and i= origin 
(residential zone). 
tSee Table 7 for definition of intensity factor. 
bvertical mixing = Proportion of parcels with more than one land use category on the site, with use categories defined as 
residential, office, or retail/services; since different uses typically occupy different floors of a structure (e.g. ground-floor 
retail and upper-level housing), this reflects the degree of vertical mixing within buildings. 
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Table 10. Models for predicting probability of traveling by a non-single occupant vehicle mode for non-work, home-based 
trips 

Dependent variable: Non-work trip by all means except non-single occupant vehicle (I = yes, 0 = no) 

Explanatory variables 
No. of automobiles, trucks and vans in 

household per person over 4 years of age 

Base model Built environment model 

Coefficient Probability Coefficient Probability 

-0.5577 0.000 -0.0387 0.000 

Annual income per person (over 4 years of age) 
in household, in $1000 

-0.0213 0.000 -0.0288 0.000 

No. of children under 5 years of age in household 
Male (I = yes, 0 = no) 
Age, in years 
Possess a driver’s license (I = ye:, 0 = no) 
Employed, full-time or part-time, 

non-student (1 = yes, 0 = no) 

0.2091 0.010 0.2222 0.009 
-0.2653 0.001 -0.2831 0.001 
-0.0096 0.000 -0.0086 0.002 
-2.4675 0.000 -2.5497 0.000 
-0.4778 0.000 -0.3927 0.000 

Trip distance (Euclidean miles, 
centroid-to-centroid) 

-0.0165 0.020 -0.0162 0.021 

Intensity factor’ 
Walking quality factor+ 
Land use mixing (dissimilarity index): 
Proportion of intersections that are 

four-way (e.g. not T or Y intersections) 

0.1841 0.157 
0.1308 0.032 
2.1289 0.049 
0.8131 0.006 

Proportion of non-residential parcels with 
front- or side-lot on-site parking 

-0.7578 0.000 

Constant 

Summary statistics 

No. of cases 
Rho (pseudo-R squared) 

F statistic (probability) of model differences = 7.43 (0.000) 

3.1687 0.000 4.6063 0.000 

Base model Built environment model 

2850 2850 
0.1794 0.1900 

*See Table 7 for definition of intensity factor. 
See Table 7 for definition of walking quality factor. 
tDissimilarity index: proportion of dissimilar land uses among hectare grid cells within a tract. For each tract, computed as: 
{ [~~C~JX,/8)]/~}, where: K,= number of actively developed hectare grid-cel!s in tract, and X1,= I if land-use category of 
neig bormg (I.e. abuttmg or dtagonal) hectare grad-cell doffers from hectare gnd-cellJ (0 otherwise); I2 land-use categortes 
were used: residential, general commercial, retail and wholesale, office, industrial, mixed commercial-industrial, health, 
institutional (including civic and religious), educational, ports and airports, commercial-recreational, and public parks- 
outdoor recreational. 

reveal neighborhoods that are denser and more pedestrian-oriented in their designs are associated 
with choosing shared-ride, transit, and non-motorized modes for non-work travel. Supplementing 
these factors were three variables that further embellished the model by revealing other elements of 
diversity and pedestrian-oriented design that reduce SOV trip-making. Notably, non-SOV travel 
increased with the spatial inter-mixing of land uses (reflected by the dissimilarity index). And while 
four-way intersections, as a proxy for gridded street patterns and controlled crossings, were asso- 
ciated with more non-SOV travel, separating buildings by front- and side-lot parking (and thus 
increasing setbacks and inconveniencing walkers) had the opposite effect. In fact, the model results 
suggest that, holding all else constant, someone heading to a shop within their neighborhood is, on 
average, 56% more likely to drive alone if all buildings are surrounded by front- and side-lot 
parking vs if all buildings have rear-lot parking.* 

9.2.2. Non-personal vehicle model. When models were run for predicting the probability of 
choosing a non-personal vehicle mode for non-work trips, the built environment variables added 
even more incremental explanatory power. Table 11 shows that the intensity and walking quality 

factors emerged as particularly strong predictors of non-personal vehicle travel, and were supple- 
mented by ‘average sidewalk width’ as an indicator of pedestrian capacity. 

*Using the mean (or, for nominal variables, modal) values of all other explanatory variables in Table 10, the difference in 
probability was calculated as: [(z + exp(-0.7578))/((2 + exp(-0.7578)) + I)] = 0.560, where z = exp((-0.0387)( I .78) + 
(-0.0288)(47.7) + (0.2222)(0.19) + (-0,2831)(O) + (-0.0086)(38.7) + (-2.5497)(l) + (-0,3927)(l) + (-0.0162)(4.76) 
+(0.1831)(O)+ (0.1308)(-0.07)+(0.8131)(0.37)+(-0.7577)(0.40)+4.6063)]=0.805. 
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Table I I. Models for predicting probability of traveling by a non-personal vehicle mode for non-work, home-based trips 

Dependent variable: Non-work trip by non-personal vehicle (I = yes, 0 = no)’ 

Base model Built environment model 

Coefficient Probability Coefficient Probability 

Explanatory variables 
No. of automobiles and vans in 

household per person over 4 years of age 
Annual income per person (over 4 years of age) 

in household, in $1000 
No. of children under 5 years of age in household 
Possess a driver’s license (I = yes, 0 = no) 
Employed, full-time or part-time, non-student 

(I = yes, 0 = no) 

- I .2506 0.000 -1.0199 0.000 

-0.0265 0.000 -0.0198 0.000 

-0.1361 0.156 -0.2121 0.046 
-1.1356 0.000 -1.2441 0.000 
-0.4003 0.001 -0.4205 0.000 

Trip distance (Euclidean miles, centroid-to-centroid) -0.1094 
Proportion of non-residential parcels with paid 0.8120 

off-street or abutting on-street parking 
Intensity factor+ 
Walking quality factor* 
Average sidewalk width (feet) 
Constant 0.1287 0.404 

0.000 -0.1072 
0.000 0.7014 

0.2162 
0.4791 
0.0191 
0.9649 

0.000 
0.005 

0.049 
0.000 
0.038 
0.021 

Summary stalisfics 

No. of cases 
Rho (pseudo-R squared) 

F statistic (probability) of model differences = 24.93 (0.000) 

Base model Built environment model 

2850 2850 
0.1586 0.1802 

‘Non-personal vehicle represents travel by all means other than private automobile, truck, van, motorcycle, or taxi. 
%ee Table 7 for definition of intensity factor. 
*See Table 7 for definition of walking quality factor. 

The same control variables as in the previous model were found to be significant; however, the 
traveler’s gender and age did not enter as significant while the paid parking variable did. Partly 
because they have more limited access to personal vehicles, those without driver’s licenses, young 
people, and those from poorer households rely more on public transportation for non-work trips 
and, as shown by Untermann (1984) are more likely to walk or cycle. The effects of having 
infants, toddlers, and pre-school children on non-work mode choice are particularly noteworthy, 
as revealed in Tables 10 and 11. Because parents often bring very young children along when 
shopping and heading to other non-work destinations, by definition they tend to make more 
multiple-occupant automobile trips (thus the positive sign on the non-SOV model). Yet these trips 
are normally by automobiles or vans (thus the negative sign on the non-personal vehicle model). 
The entry of these variables into the models underscores the importance of lifecycle factors, such 
as child dependency, in accounting for non-work mode choices. Both tables also show that vehicle 
usage generally increases with non-work trip distance, and Table 11 shows that paid parking 
within neighborhoods can encourage people to walk to shops and other non-work destinations. 

9.2.3. Non-personal vehicle choice for personal-business trips. In general, results were similar 
when mode choice models were run for non-work trips stratified by specific purpose (e.g. shop- 
ping, personal business, and social-recreation). The most significant stratified mode choice model 
was for personal business trips. Table 12 shows the intensity and walking quality factors added 
nearly 10 percentage points to the predictive abilities of the base model, a highly significant jump. 
Thus, within-neighborhood trips (e.g. controlling for distance) to a bank or a dentist for personal 
services are more likely to be by transit, foot, or bicycle in dense, activity-rich, and pedestrian- 
friendly environments. One might surmise that, since personal business trips are less likely to 
require goods and purchases to be hauled, they are potentially less wedded to the use of personal 
vehicles (unlike, say, shopping) in a conducive built environment. 

9.3. Work mode choice 
While research by Handy (1993) and Ewing et al. (1994) suggests shopping and other non-work 

trips might be most strongly influenced by mixed land uses, other studies (Cervero, 1991, 1996; 
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Table 12. Models for predicting probability of traveling by a non-personal vehicle mode for personal business, home-based 
trips 

Dependent variable: Personal business trip by non-personal vehicle (I = yes, 0 = no)’ 

Explanatory variables 
No. of automobiles and vans in 

household per person over 4 years of age 
No. of children under 5 of age in household years 
Possess a driver’s license (I = 0 = no) yes, 
Male (1 = 0 = no) yes, 
Employed, full-time or part-time, non-student 

(I = yes, 0 = no) 
Trip distance (Euclidean miles, centroid-to-centroid) 
Intensity factor+ 
Walking quality factor* 
Constant 

Summary slalistics 

No. of cases 
Rho (pseudo-R squared) 

F statistic (probability) of model differences = 38.08 (0.000) 

Base model Built environment model 

Coefficient Probability Coefficient Probability 

-1.4731 0.000 -0.9127 0.033 

-0.9617 0.073 -0.8576 0.077 
-I .8992 0.000 -2.2854 0.000 
-0.5559 0.079 -0.63 11 0.072 
-0.8943 0.000 -1.0070 0.018 

-0.6660 0.000 -0.8344 0.000 
1.3430 0.000 
0.3242 0.078 

2.2064 0.000 2.4999 0.000 

Base model Built environment model 

509 509 
0.3089 0.4003 

*Non-personal vehicle represents travel by all means other than private automobile, truck, van, motorcycle, or taxi. 
%ee Table 7 for definition of intensity factor. 
%ee Table 7 for definition of walking quality factor. 

Frank and Pivo, 1994) have shown the presence of retail activities can also be a significant induce- 
ment to non-auto commuting, both by workers and residents. These studies have suggested that 
the presence of convenience and grocery stores near residences encourages transit commuting by 
allowing workers to shop while en route from transit stops to their homes in the evening. 

As shown in Table 13, our research results were consistent with this proposition. Notably, 
controlling for factors like trip distance and transit service intensities, pedestrian-friendly environ- 
ments and the presence of convenience stores within a quarter mile of residences appears to induce 
commute trips via transit and non-motorized modes. In fact, the model suggests that the prob- 
ability of commuting by a non-personal vehicle mode is nearly three-quarters higher in a neigh- 
borhood where everyone lives within a quarter mile of a convenience store vs one where no one 
lives this close, holding constant factors like transit service intensity, commute distance, gender, 
and the like.* Importantly, these mode1 results suggest that plentiful neighborhood retail shops 
and pedestrian-oriented designs, and not residential densities, are significant factors in encoura- 
ging people to commute by transit and non-motorized modes. Experiences from the Bay Area also 
suggest that diversity and design within residential neighborhoods appear capable of yielding 
transportation benefits not only for non-work travel, but for work trips as well. 

10. CONCLUSION 

Our research findings lend some degree of credibility to the claims of new urbanists and others 
that compact, mixed-use, pedestrian-friendly designs can ‘degenerate’ vehicle trips, reduce VMT 
per capita, and encourage non-motorized travel. As with any cross-sectional statistical analysis 
and in light of the methodological limitations inherent in this line of research, the results must be 
interpreted as being associative rather than causal. Overall, our research suggests that the effects of 
the Bay Area’s built environment on travel demand were modest to moderate at best. This finding 
is best summarized by elasticities between different indicators of travel demand and measures of 
the three dimensions of the built environment, as shown in Table 14. Elasticities fell in the range of 
0.063 to 0.592, in absolute terms. Once other variables, like vehicle-ownership rates, were 

*Using the mean (or, for nominal variables, modal) values of all other explanatory variables in Table 13, the differential was 
calculated as: [(z + exp(0.98 lS))/((: + exp(0.9185)) + I)] = 0.729, where z=exp[(-1.1823)(1.78)+(-0.2601)(0.19)+ 
(- 1.8751)( 1) + (-0.7853)(0)(-0.2966)(9.78) + (0.7047)(0.57) + (1.8656)(0.06) + (0.3422)(O) + (0.9815)(0.41) + 2.0078) 
=0.0174. 
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Table 13. Models for predicting probability of traveling by a non-personal vehicle mode for work, home-based trips 

Dependent variable: Work trip by non-personal vehicle (1 = yes, 0 = no)’ 

Base model Built environment model 

Coefficient Probability Coefficient Probability 

Explanatory variables 
No. of automobiles and vans in household 

per person over 4 years of age 
- 1.2706 0.000 -1.1823 0.000 

No. of children under 5 years of age in household 
Possess a driver’s license (1 = yes, 0 = no) 
Male (1 = yes, 0 = no) 
Trip distance (Euclidean miles, centroid-to-centroid) 
Proportion of non-residential parcels with paid 

off-street or abutting on-street parking 

-0.3285 0.086 -0.2601 0.164 
-1.8469 0.000 -1.8751 0.000 
-0.7751 0.000 -0.7853 0.000 
-0.3049 0.000 -0.2966 0.000 

1.2373 0.000 0.7047 0.155 

Transit service intensity’ 
Walking quality factor’ 
Proportion of residential area within l/4 mile 

of a convenience retail store 

2.3045 0.078 I .8656 0.098 
0.3422 0.051 

- 0.9815 0.046 

Constant 

Summary statistics 

No. of cases 
Rho (pseudo-R squared) 

F statistic (probability) of model differences = 13.66 (0.000) 

2.3380 0.000 2.0078 0.021 

Base model Built environment model 

1544 1544 
0.3487 0.3601 

*Non-personal vehicle represents travel by all means other than private automobile, truck, van, motorcycle, or taxi. 
‘Transit service intensity = total route miles of revenue service over the 8-9 am peak period within the tract (or along its 
borders), divided by developed active area (in acres) of tract, measured as:{60 [xi (MJH,)]}/A,}, where M=route miles of 
revenue service within or bordering tract, from 8-9 am, H= average headways of bus routes within tract, A = developed 
active area, in acres (e.g. excluding public parks, vacant land, cemeteries, public infrastructure space, etc.), and i= origin 
(residential zone). 
%ee Table 7 for definition of walking quality factor. 

controlled, the intensity factor was found to have a fairly marginal impact on travel demand, 
consistent with the arguments by Ewing (1994). Densities exerted the strongest influence on per- 
sonal business trips. Additionally, residential neighborhoods that were spatially accessible to 
commercial activities, reflected by the accessibility index variable, tended to average appreciably 
less VMT per household. Table 14 further shows that diversity also had a modest impact on travel 
demand, though where it was significant, its influences were a bit stronger than that of density. 
Consistent with the findings of Frank and Pivo (1994) and Cervero (1996), having retail activities 
within neighborhoods was most closely associated with mode choice for work trips. Lastly, the 
dimension of walking quality was generally moderately associated with travel demand. Import- 
antly, its influences on mode choice for non-work trips, controlling for trip distance, was stronger 
than that of density. Moreover, several specific design elements of the built environment seemed to 
be particularly relevant to non-work trip-making. Notably, neighborhoods with high shares of 
four-way intersections, as a proxy for grid-iron street patterns, and limited on-street parking 
abutting commercial establishments tended to average less single-occupant vehicular travel for 
non-work purposes. 

Furthermore, based on our factor analysis results, our findings suggest that the somewhat 
obtuse concept of ‘built environment’ can be defined along distinct dimensions, and that these 
dimensions, both individually and collectively, are associated with how Bay Area residents travel, 
though often only moderately so and in ways that are still not fully understood. Higher densities, 
diverse land uses, and pedestrian-friendly designs, we believe, must co-exist to a certain degree if 
meaningful transportation benefits are to accrue. Having nice sidewalks, attractive landscaping, 
and other pedestrian amenities in a low-density, residential-only neighborhood is unlikely to 
prompt many residents to walk to shops and stores. However, the synergy of the 3Ds in combi- 
nation is likely to yield more appreciable impacts. 

Besides these general findings, several additional insights were gained through this research. 
One, neighborhood characteristics were generally a stronger predictor of mode choice for non- 
work trips than for commute trips. Nonetheless, the presence of convenience shops and retail 
outlets within neighborhoods was associated with commuting via transit and non-motorized 
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Table 14. Elasticities between measures of the built environment and travel demand, using mid-point (mean and mode) 
values for explanatory variables 

Built environment 

Person vehicle 
miles traveled 

per household for’ 

All trips Non-work 

Travel demand 

Probability of travel by 

Non-SOV for:+ Non-personal vehicle for:+ 

Non-work trips Non-work Pers. bus. Work 

Densityt 
Intensity factors 
Accessibility index 

-0.063q 0.098 0.084 0.113 - 
-0.274 

Diversifyf 
Land use mixing 
Vertical mixing 
Population within 

1/4mile of store 

0.111 
-0.141 

0.365 

Design1 
Walking quality factor5 
Four-way intersections 
Quadrilaterals 
Sidewalk width 
Front and side parking 

0.085 0.183 0.174 0.119 
-0.592 0.501 

0.185 0.463 
0.087 

-0.505 -0.121 

*Elasticities computed as: ,5 (x/y), where: fi= estimated coefficient; x= mean of explanatory (built environment) variable; 
y = mean of dependent (travel demand) variable. 
+Elasticities computed as: B(x)( I -n), where: B = estimated coefficient; x = mean of explanatory (built environment) variable; 
K = mean estimated probability. 
%ee Tables 3 and 8-13 for definitions of variables, and Table 7 for definition of factors. 
$.ince factor scores are standardized, with means equal to zero, mid-point (i.e. mean-value) elasticities cannot be calculated. 
Instead, the elasticities for factors were estimated as the proportion point change in probability estimates for the dependent 
(travel demand) variables given a 1 standard deviation increase in a factor score, setting all other explanatory variables in 
the models at their mean (or for nominal variables, modal) values, as shown in footnotes (pp. 214 and 216) of this article. 
TFor the reason explained in note 5 above, the elasticity of personal vehicle miles traveled per household as a function of the 
intensity factor was calculated for values of the dependent variable and intensity factor one standard deviation above the 
mean (i.e. y= 50.4, x = I). 

modes. Second, factor analysis proved to be a useful approach for combining colinear variables to 
reveal the relative contributions of different attributes of the built environment in explaining travel 
demand. Trying to measure the unique travel effects of any one element of the built environment is 
often fruitless because of the high multicolinearity and statistical interaction of built environment 
variables. Third, the dissimilarity index of spatial mixing proved to be a more powerful predictor 
and measure of diversity than the entropy index of land-use heterogeneity. Fourth, despite very 
time-consuming field work, relatively few land-use and urban design variables entered the predic- 
tive models. Most micro-elements of a neighborhood, like sidewalk widths and presence of street 
trees, had little bearing on travel demand once more basic explainers, like land-use diversity and 
demographic attributes, were accounted for. The lack of significant predictive powers among 
many design variables was also likely attributable, in part, to less variation relative to control 
variables. As noted, while control variables like income, age, and trip lengths varied across tens of 
thousands of trips and over 8000 households, there were only 50 possible data values for the built 
environment variables (i.e. one for each of the 50 case neighborhoods). The much smaller cross- 
observation variation among built environment variables undoubtedly placed these variables at a 
predictive disadvantage. 

It would have been desirable to investigate whether the built environment had a significant 
impact on specific non-work travel choices, such as walk trips. The presence of neighborhood 
convenience stores and tree-lined sidewalks, for instance, could be expected to induce some within- 
neighborhood shop trips to be made by foot. They would likely have little influence on transit 
patronage, however. Thus, lumping walk, bicycle, and transit trips together as ‘non-personal- 
vehicle’ travel might have diluted the analysis by losing some of the precision on mode choice. The 
problem encountered in attempting to model mode choice for walk trips alone, however, was the 
shortage of cases. For the 50 sampled neighborhoods, there were only 340 walk trips out of some 
3000 recorded trips; several neighborhoods had no recorded walk trips. Gauging how the built 
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environment affects the choice of any particular non-automobile mode, be it walking or transit, 
would require a very generous budget to collect detailed land-use and design data across numerous 
tracts and to obtain many more travel diaries within each tract than are normally available from 
regional surveys. Based on the somewhat encouraging findings from our study, we believe such 
research refinements would be worthwhile pursuing. In that the admittedly tenuous link between 
transportation and land use has come under assault from many quarters in recent times, research 
that enriches our understanding of how different elements of the built environment combine to 
shape travel behavior under different conditions is more imperative now than ever. 
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