Prova-modelo de Exame

Nome	N.°	Turma	Data	/maio/2019		
Avaliação	Professor					
Duração da Prova (Caderno 1 + Caderno 2): 150 minutos	Tolerânc	ia: 30 minuto	OS			
A prova é constituída por dois cadernos (Caderno 1 e Cade	erno 2).					
Para a resolução do Caderno 1, é necessário o uso de calcu é permitido o uso de calculadora.	uladora gra	áfica. Para a	resolução do	Caderno 2, não		
Utilize apenas caneta ou esferográfica de tinta azul ou pre	ta.					
É permitido o uso de régua, compasso, esquadro e transfe	ridor.					
Não é permitido o uso de corretor. Risque aquilo que preto	ende que	não seja clas	sificado.			
Para cada resposta, identifique o item.						
Apresente as suas respostas de forma legível.						
Apresente apenas uma resposta para cada item.						
A prova inclui um formulário.						

Na resposta aos itens de escolha múltipla, selecione a opção correta. Escreva, na folha de respostas, o número do item e a letra que identifica a opção escolhida.

Na resposta aos restantes itens, apresente todos os cálculos que tiver de efetuar e todas as justificações necessárias. Quando, para um resultado, não é pedida a aproximação, apresente sempre o valor exato.

Formulário

Geometria

Comprimento de um arco de circunferência

 αr (α – amplitude, em radianos, do ângulo ao centro; r – raio)

Área de um polígono regular: Semiperímetro × Apótema

Área de um setor circular:

 $\frac{\alpha r^2}{2}$ (α – amplitude, em radianos, do ângulo ao centro; r – raio)

Área lateral de um cone: πrg (r – raio da base; g – geratriz)

Área de uma superfície esférica: $4 \pi r^2 (r - raio)$

Volume de uma pirâmide: $\frac{1}{3} \times \text{Área da base } \times \text{Altura}$

Volume de um cone: $\frac{1}{2}$ × Área da base × Altura

Volume de uma esfera: $\frac{4}{3} \pi r^3 (r - raio)$

Progressões

Soma dos n primeiros termos de uma progressão (u_n) :

Progressão aritmética: $\frac{u_1+u_n}{2} \times n$

Progressão geométrica: $u_1 \times \frac{1-r^n}{1-r}$

Trigonometria

sen (a + b) = sen a cos b + sen b cos a

cos(a + b) = cos a cos b - sen a sen b

$$\frac{\operatorname{sen} A}{a} = \frac{\operatorname{sen} B}{b} = \frac{\operatorname{sen} C}{c}$$

 $a^2 = b^2 + c^2 - 2bc \cos A$

Complexos

 $(\rho \operatorname{cis} \theta)^n = \rho^n \operatorname{cis} (n\theta) \text{ ou } (\rho e^{i\theta})^n = \rho^n e^{in\theta}$

$$\sqrt[n]{\rho \operatorname{cis} \theta} = \sqrt[n]{\rho} \operatorname{cis} \left(\frac{\theta + 2k\pi}{n}\right) \operatorname{ou} \sqrt[n]{\rho e^{i\theta}} = \sqrt[n]{\rho} e^{i\left(\frac{\theta + 2k\pi}{n}\right)}$$

 $(k \in \{0, ..., n-1\} \in n \in \mathbb{N})$

Probabilidades

$$\mu = p_1 x_1 + \ldots + p_n x_n$$

$$\sigma = \sqrt{p_1(x_1 - \mu)^2 + \dots + p_n(x_n - \mu)^2}$$

Se $X \in N(\mu, \sigma)$, então:

$$P(\mu - \sigma < X < \mu + \sigma) \approx 0.6827$$

$$P(\mu - 2\sigma < X < \mu + 2\sigma) \approx 0.9545$$

$$P(\mu - 3\sigma < X < \mu + 3\sigma) \approx 0.9973$$

Regras de derivação

$$(u+v)'=u'+v'$$

$$(u v)' = u' v + u v'$$

$$\left(\frac{u}{v}\right)' = \frac{u'v - uv'}{v^2}$$

$$(u^n)' = n u^{n-1} u' \quad (n \in \mathbb{R})$$

$$(\operatorname{sen} u)' = u' \cos u$$

$$(\cos u)' = -u' \sin u$$

$$(\operatorname{tg} u)' = \frac{u'}{\cos^2 u}$$

$$(e^u)' = u' e^u$$

$$(a^u)' = u' a^u \ln a \quad (a \in \mathbb{R}^+ \setminus \{1\})$$

$$(\ln u)' = \frac{u'}{u}$$

$$(\log_a u)' = \frac{u'}{u \ln a} \quad (a \in \mathbb{R}^+ \setminus \{1\})$$

Limites notáveis

$$\lim \left(1 + \frac{1}{n}\right)^n = e \quad (n \in \mathbb{N})$$

$$\lim_{x \to 0} \frac{\sin x}{x} = 1$$

$$\lim_{x\to 0}\frac{e^x-1}{x}=1$$

$$\lim_{x \to +\infty} \frac{\ln x}{x} = 0$$

$$\lim_{x \to +\infty} \frac{e^x}{x^p} = +\infty \quad (p \in \mathbb{R})$$

Caderno 1: 75 minutos. Tolerância: 15 minutos. É permitido o uso de calculadora.

1. Na figura ao lado está representado o triângulo [ABC] .

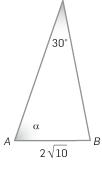
Designou-se por α a amplitude do ângulo BAC.

Sabe-se que:

•
$$A\hat{C}B = 30^{\circ}$$

•
$$tg \alpha = 3$$

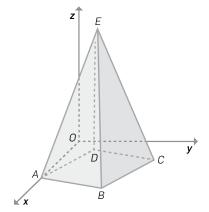
Qual é o comprimento do segmento de reta [BC]?



2. Na figura ao lado está representada, em referencial o.n. Oxyz, a pirâmide quadrangular regular [ABCDE], cuja base está contida no plano xOy.

Sabe-se que:

- o vértice A pertence ao eixo Ox;
- uma equação do plano $ADE \in 6x + 18y 5z = 24$;
- o ponto E pertence à reta r , de equação vetorial $(x,y,z)=(5,-4,2)+k(-1,3,2), k\in\mathbb{R}$.



- **2.1** Sejam $F \in G$ os pontos da reta r cujas cotas são, respetivamente, $-2 \in 4$. Determina a amplitude, em graus, do ângulo FOG. Apresenta o resultado arredondado às unidades.
- **2.2** Determina o volume da pirâmide.
- 2.3 Considera o prisma quadrangular regular em que uma das bases coincide com a base da pirâmide e a outra base tem por centro o ponto E. Seja α o plano que passa no ponto E e é paralelo à face lateral do prisma que contém o segmento de reta [AB].

Ao acaso, escolhe-se um vértice em cada base do prisma. Qual é a probabilidade de a reta definida pelos dois pontos escolhidos ser paralela ao plano α ? Apresenta o resultado na forma de fração irredutível.

3. Uma turma de uma escola secundária tem 30 alunos. A Rita é a delegada e o Pedro é o subdelegado dessa turma.

O professor de Matemática vai escolher um grupo de seis alunos para realizar um trabalho, mas pretende que a Rita e o Pedro não façam simultaneamente parte do grupo escolhido.

Nestas condições, quantas comissões diferentes podem ser formadas?

- (A) 526 600
- **(B)** 534 400
- **(C)** 547 700
- **(D)** 573 300

4. No baile de finalistas de uma escola estão presentes várias pessoas do sexo masculino (alunos e professores).

Sabe-se que:

- $\frac{4}{5}$ dessas pessoas são alunos (os restantes são professores);
- $\frac{2}{3}$ dessas pessoas vão de gravata (os restantes vão de laço).

Sabe-se também que $\frac{3}{4}$ dos alunos vão de gravata.

Entre todos os participantes do sexo masculino, escolhe-se um, ao acaso, para receber uma caneta oferecida pela organização.

Qual é a probabilidade de ser escolhido um professor que vai de laço?

Na tua resposta:

- designa por A o acontecimento «ser aluno» e por G o acontecimento «ir de gravata»;
- apresenta o resultado na forma de fração irredutível.
- 5. Um paraquedista salta de um avião. Ao fim de algum tempo, o paraquedas abre. Admite que a distância, em metros, a que o paraquedista se encontra do solo, t segundos após a abertura do paraquedas, é dada por:

$$d(t) = 930 - 6t + 24e^{-1.7t}$$

No instante da abertura do paraquedas, o paraquedista está a uma certa distância do solo. Determina, recorrendo à calculadora gráfica, quanto tempo demora o paraquedista a percorrer um terço dessa distância (desde o instante em que se dá a abertura do paraquedas).

Na tua resposta:

- · equaciona o problema;
- reproduz, num referencial, o(s) gráfico(s) da(s) função(ões) visualizado(s) na calculadora que te permite(m) resolver a equação;
- apresenta o valor pedido arredondado às unidades.
- 6. Seja z um número complexo cujo afixo pertence à circunferência de centro na origem do referencial e raio $\sqrt{3}$. Seja $w = |z|^2 + z - \overline{z}$.

Sabe-se que $Re(w) \times Im(w) = 9$.

Qual é a parte imaginária do número complexo z?

(A)
$$\frac{2}{3}$$
 (B) $\frac{3}{2}$

(B)
$$\frac{3}{2}$$

(C)
$$\frac{3}{4}$$

(D)
$$\frac{4}{3}$$

7. De uma progressão aritmética (u_n) sabe-se que a razão é $-\frac{2}{3}$ e que, para um certo número natural m , maior do que 1, se tem $u_1+u_m=20\,$ e $\sum_{k=1}^m u_k=220\,$.

Verifica que -203 é termo da sucessão (u_n) e indica a sua ordem.

8. Considera, em referencial o.n. xOy, o paralelogramo [ABCD] em que o segmento de reta [AC] é uma das diagonais. Seja E o ponto de interseção das diagonais do paralelogramo.

Sabe-se que:

- o vetor \overrightarrow{AE} tem coordenadas (4,3);
- o vetor \overrightarrow{CB} tem coordenadas (-5,2);
- o ponto C tem coordenadas (7,10).

Quais são as coordenadas do ponto D?

- **(A)** (4, 1)
- **(B)** (4, 2)
- **(C)** (6, 1)
- **(D)** (6, 2)

FIM DO CADERNO 1

Caderno 2: 75 minutos. Tolerância: 15 minutos. Não é permitido o uso de calculadora. **9.** Considera, em referencial o.n. x0y, uma elipse centrada no ponto 0 e cujos focos pertencem ao eixo 0x. Seja F o foco de abcissa positiva.

A elipse interseta o eixo Ox em dois pontos. Seja A o que tem abcissa positiva.

Sabe-se que:

- F é o ponto médio do segmento de reta [OA];
- o ponto de coordenadas (-2,3) pertence à elipse.

Qual é a abcissa do ponto A?

(A) 2

(B) 3

(C) 4

(D) 5

10. Em \mathbb{C} , conjunto dos números complexos, considera:

$$z_1 = 4\left(\cos\frac{2\pi}{9} + i \operatorname{sen}\frac{2\pi}{9}\right)$$

$$z_2 = \cos\frac{\pi}{18} + i \sin\frac{\pi}{18}$$

$$z_1 = 4\left(\cos\frac{2\pi}{9} + i \sin\frac{2\pi}{9}\right) \qquad z_2 = \cos\frac{\pi}{18} + i \sin\frac{\pi}{18} \qquad z_3 = \sqrt{2}\left(\cos\frac{5\pi}{12} + i \sin\frac{5\pi}{12}\right)$$

Seja $w=-2+rac{z_1 imes\overline{z_2}}{2+(z_2)^3}$. Escreve, na forma trigonométrica, o número complexo w .

- **11.** Seja $a = \lim_{n \to \infty} \left(\frac{n^2 n}{n^2 + n} \right)^{2n}$. Qual é o valor de $\ln(a)$?
 - (A) -2
- **(B)** -3
- **(D)** -5
- **12.** Determina o conjunto dos números reais tais que: $2\log_3(\sqrt{3}x) \ge 3 + \log_3(x-2)$

Apresenta a tua resposta na forma de união de intervalos de números reais.

13. Seja f a função contínua, de domínio $\left[-\infty, \frac{3\pi}{2}\right]$, definida por:

$$f(x) = \begin{cases} \frac{e^{kx} - (1+x)^2}{x} & \text{se } x < 0\\ \sin x \ (1+\cos x) & \text{se } 0 \le x \le \frac{3\pi}{2} \end{cases}$$
 (k designa um número real positivo)

- **13.1** Qual é o valor de k?
 - (A) 2
- **(B)** 3
- (C) 4
- **(D)** 5
- **13.2** O gráfico da função f tem uma assíntota oblíqua. Determina a equação reduzida dessa assíntota.
- **13.3** Estuda a função f quanto à monotonia no intervalo $\left]0,\frac{3\pi}{2}\right]$ e determina, caso existam, os extremos relativos.

14. Considera, em referencial o.n. xOy, o gráfico da função g, de domínio \mathbb{R}^+ , definida por:

$$g(x) = x (\ln x)^2$$

Seja r a reta tangente ao gráfico da função g no ponto de abcissa $\frac{1}{e}$.

Seja B o ponto interseção da reta r com o eixo Oy .

Qual é a ordenada do ponto B?

(A)
$$-\frac{2}{e}$$

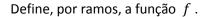
(B)
$$-\frac{1}{e}$$
 (C) $\frac{1}{e}$

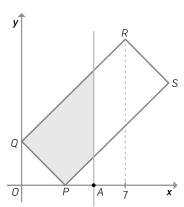
(C)
$$\frac{1}{e}$$

(D)
$$\frac{2}{e}$$

- **15.** Na figura ao lado está representado, em referencial o.n. xOy, o retângulo [PQRS], em que:
 - o ponto P tem coordenadas (3,0);
 - o ponto Q tem coordenadas (0,3);
 - o ponto *R* tem abcissa 7.

Considera que um ponto A se desloca ao longo do eixo Ox, entre a origem O do referencial e o ponto de abcissa 7, sem coincidir com o ponto $\,{\it O}\,$. Para cada posição do ponto $\,{\it A}\,$, seja a a sua abcissa e seja f(a) a área da região sombreada (interseção do retângulo com o semiplano definido pela condição $x \leq a$).





FIM

Prova-modelo de Exame • maio/2019

Proposta de resolução

Caderno 1

1. (C)

De acordo com a lei dos senos, tem-se: $\frac{-\sin \alpha}{\overline{BC}} = \frac{-\sin 30^{\circ}}{2\sqrt{10}}$

Por outro lado, tem-se: $1+tg^2\alpha=\frac{1}{\cos^2\alpha} \iff 1+3^2=\frac{1}{\cos^2\alpha} \iff \cos^2\alpha=\frac{1}{10} \iff$

 \Leftrightarrow $\sin^2 \alpha = 1 - \frac{1}{10} \Leftrightarrow \sin^2 \alpha = \frac{9}{10}$ Como $\sin \alpha > 0$, vem $\sin \alpha = \frac{3}{\sqrt{10}}$.

Portanto, $\frac{\frac{3}{\sqrt{10}}}{\overline{BC}}=\frac{\frac{1}{2}}{2\sqrt{10}}$ donde vem: $\overline{BC}=\frac{2\sqrt{10}\times\frac{3}{\sqrt{10}}}{\frac{1}{2}}=\frac{6}{\frac{1}{2}}=12$

2.1 De acordo com o enunciado, uma equação vetorial da reta r é:

$$(x, y, z) = (5, -4, 2) + k(-1, 3, 2), k \in \mathbb{R}$$

F é o ponto da reta r cuja cota é -2 . Tem-se: $-2=2+2k \Leftrightarrow k=-2$

Assim, as coordenadas do ponto F são (5, -4, 2) - 2(-1, 3, 2) = (7, -10, -2)

G é o ponto da reta r cuja cota é 4. Tem-se: $4=2+2k \Leftrightarrow k=1$

Assim, as coordenadas do ponto $\,G\,$ são: $\,(5,\,-4,2)+(\,-1,3,2)=(4,\,-1,4)\,$

Seja α a amplitude do ângulo FOG .

 $\text{Tem-se:}\quad \overrightarrow{OF} \,.\, \overrightarrow{OG} = \left\| \overrightarrow{OF} \,\right\| \times \left\| \overrightarrow{OG} \right\| \times \cos \alpha \Leftrightarrow$

$$\Leftrightarrow (7, -10, -2) \cdot (4, -1, 4) = ||(7, -10, -2)|| \times ||(4, -1, 4)|| \times \cos \alpha \Leftrightarrow$$

$$\Leftrightarrow 28 + 10 - 8 = \sqrt{153} \times \sqrt{33} \times \cos \alpha \Leftrightarrow \cos \alpha = \frac{30}{\sqrt{5049}}$$

Portanto, $lpha \approx 65^{\circ}$.

2.2 A altura da pirâmide é a cota do ponto E , ponto de interseção do plano ADE com a reta $\,r\,.$

Comecemos então por determinar as coordenadas do ponto $\,E\,$.

Tem-se:
$$(x, y, z) = (5, -4, 2) + k(-1, 3, 2) \Leftrightarrow (x, y, z) = (5 - k, -4 + 3k, 2 + 2k)$$

Como uma equação do plano ADE é 6x + 18y - 5z = 24 , vem:

$$6(5-k) + 18(-4+3k) - 5(2+2k) = 24 \Leftrightarrow$$

$$\Leftrightarrow 30 - 6k - 72 + 54k - 10 - 10k = 24 \Leftrightarrow 38k = 76 \Leftrightarrow k = 2$$

Portanto, o ponto E tem coordenadas $(5-2, -4+3\times 2, 2+2\times 2)$, ou seja, (3,2,6).

A altura da pirâmide é, assim, igual a 6.

Por outro lado, o centro da base da pirâmide tem abcissa e ordenada iguais às do ponto $\,E\,$.

Assim, o centro da base da pirâmide tem coordenadas (3, 2, 0).

A distância deste ponto ao ponto A é metade da diagonal da base.

Como o ponto A pertence ao eixo Ox, tem ordenada e cota iguais a zero.

Por outro lado, o ponto $\,A\,$ pertence ao plano $\,ADE\,$, pelo que as suas coordenadas verificam a equação deste plano.

Tem-se, assim: $6x + 18 \times 0 - 5 \times 0 = 24 \Leftrightarrow x = 4$

Portanto, as coordenadas do ponto A são (4,0,0).

Logo, a distância do centro da base ao ponto $A \in \sqrt{(4-3)^2+(0-2)^2+(0-0)^2}=\sqrt{5}$.

Assim, a diagonal da base é $2\sqrt{5}$.

Como um quadrado é um losango, a área da base pode ser obtida aplicando a fórmula que dá a área de um losango (metade do produto das diagonais).

Portanto, a área da base da pirâmide é igual a $\frac{2\sqrt{5}\times2\sqrt{5}}{2}$, ou seja, é igual a 10.

O volume da pirâmide é, assim, igual a $\, \frac{10 \times 6}{3} = 20 \, .$

2.3 Designemos por A', B', C' e D' os vértices da base superior do prisma, de tal modo que [AA'], [BB'], [CC'] e [DD'] sejam as arestas laterais do prisma.

A experiência aleatória consiste na escolha, ao acaso, de um vértice em cada base do prisma.

Assim, o número de casos possíveis desta experiência é $4 \times 4 = 16$.

Destes dezasseis casos possíveis, são favoráveis ao acontecimento «a reta definida pelos dois pontos escolhidos é paralela ao plano α » as seguintes escolhas: A e A', B e B', C e C', D e D', A e B', B e A', C e D', D e C'.

Há, portanto, 8 casos favoráveis.

Assim, a probabilidade pedida é $\, \frac{8}{16} = \frac{1}{2} \, .$

3. (D)

Comecemos por observar que «a Rita e o Pedro não fazerem simultaneamente parte do grupo escolhido» é o contrário de «a Rita e o Pedro fazerem simultaneamente parte do grupo escolhido».

Assim, o número pedido é a diferença entre o número total de comissões e o número de comissões às quais pertencem a Rita e o Pedro.

O número total de comissões é o número de maneiras de escolher seis dos trinta alunos da turma, ou seja, é $^{30}C_6$.

O número de comissões às quais pertencem a Rita e o Pedro é o número de maneiras de escolher quatro dos restantes 28 alunos da turma, ou seja, é $\,^{28}C_4$.

Assim, o número pedido é $\,^{30}C_6 - ^{28}C_4 = 573\,300$.

- **4.** No universo das pessoas do sexo masculino presentes no baile, tem-se, de acordo com o enunciado:
 - $\frac{4}{5}$ dessas pessoas são alunos, ou seja, $P(A) = \frac{4}{5}$;
 - $\frac{2}{3}$ dessas pessoas vão de gravata, ou seja, $P(G)=\frac{2}{3}$.

É também referido que $\,\,\frac{3}{4}\,$ dos alunos vão de gravata, ou seja, $\,P(G|A)=\frac{3}{4}\,$.

É pedida a probabilidade de ser escolhido um professor que vai de laço, ou seja, é pedida a seguinte probabilidade: $P(\overline{A} \cap \overline{G})$

Tem-se:
$$P(\overline{A} \cap \overline{G}) = P(\overline{A \cup G}) = 1 - P(A \cup G) = 1 - [P(A) + P(G) - P(A \cap G)] = 1 - P(A) - P(G) + P(A \cap G) = 1 - P(A) - P(G) + P(A) \times P(G|A) = 1 - \frac{4}{5} - \frac{2}{3} + \frac{4}{5} \times \frac{3}{4} = \frac{2}{15}$$

5. No instante da abertura do paraquedas, a distância, em metros, do paraquedista ao solo é igual a d(0) .

Tem-se
$$d(0) = 930 - 0 + 24e^0 = 954$$
.

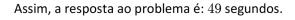
Ora, um terço desta distância é $\frac{954}{3}$ metros, ou seja, é 318 metros.

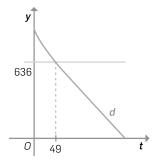
Após ter percorrido 318 metros, o paraquedista está a $954-318\,$ metros do solo, ou seja, está a $636\,$ metros do solo.

Uma equação que traduz o problema é, portanto, $\,d(t)=636\,.$

Na figura ao lado está representado o gráfico da função $\,d\,$, bem como a reta de equação $\,y=636$.

A abcissa, arredondada às unidades, do ponto de interseção destas duas linhas é $49.\,$





6. (B)

Seja
$$z=x+yi$$
 .

Como o afixo de z pertence à circunferência de centro na origem do referencial e raio $\sqrt{3}$, tem-se $|z|=\sqrt{3}$.

Portanto, tem-se:
$$w=3+x+yi-(x-yi)=3+2yi$$

Assim: $\text{Re}(w)\times \text{Im}(w)=9 \Leftrightarrow 3\times 2y=9 \Leftrightarrow y=\frac{3}{2}$

7. Tem-se:
$$\sum_{k=1}^m u_k = 220 \Leftrightarrow \frac{u_1 + u_m}{2} \times m = 220 \Leftrightarrow \frac{20}{2} \times m = 220 \Leftrightarrow m = 22$$

$$u_1 + u_m = 20 \Leftrightarrow u_1 + u_{22} = 20 \Leftrightarrow u_1 + u_1 + 21r = 20 \Leftrightarrow 2u_1 + 21 \times \left(-\frac{2}{3}\right) = 20 \Leftrightarrow 2u_1 - 14 = 20 \Leftrightarrow u_1 = 17$$

$$17 + (n-1) \times \left(-\frac{2}{3}\right) = -203 \Leftrightarrow (n-1) \times \left(-\frac{2}{3}\right) = -220 \Leftrightarrow n-1 = 330 \Leftrightarrow n = 331$$

-203 é o termo de ordem 331.

8. (B)

Tem-se:
$$D = A + \overrightarrow{AD} = A + \overrightarrow{BC} = A + (-\overrightarrow{CB})$$

Notemos agora que o ponto E é o ponto médio do segmento de reta $\lceil AC \rceil$.

Portanto, tem-se:
$$\overrightarrow{AC} = 2 \overrightarrow{AE} = 2(4,3) = (8,6)$$

Vem, então:
$$A = C + \overrightarrow{CA} = C + \left(-\overrightarrow{AC} \right) = (7,10) + (-8, -6) = (-1,4)$$

Logo:
$$D = A + (-\overrightarrow{CB}) = (-1, 4) + (5, -2) = (4, 2)$$

Outro processo:

Tem-se:
$$D = C + \overrightarrow{CD}$$

Notemos agora que o ponto $\,E\,$ é o ponto médio do segmento de reta $\,[AC]\,.$

Portanto, tem-se:
$$\overrightarrow{AC} = 2 \overrightarrow{AE} = 2(4,3) = (8,6)$$

Vem, então:
$$\overrightarrow{CD} = \overrightarrow{CA} + \overrightarrow{AD} = -\overrightarrow{AC} + \overrightarrow{BC} = -\overrightarrow{AC} + (-\overrightarrow{CB}) = -\overrightarrow{AC} + (-$$

$$= (-8, -6) + (5, -2) = (-3, -8)$$

Logo:
$$D = C + \overrightarrow{CD} = (7, 10) + (-3, -8) = (4, 2)$$

Caderno 2

9. (C)

Seja a a abcissa do ponto A; a é, portanto, o semieixo maior da elipse. Designemos o semieixo menor por b e a semidistância focal por c. Como F é o ponto médio do segmento de reta [OA], tem-se $c=\frac{a}{2}$. Vem, então:

$$a^2 = b^2 + c^2 \Leftrightarrow a^2 = b^2 + \left(\frac{a}{2}\right)^2 \Leftrightarrow b^2 = a^2 - \frac{a^2}{4} \Leftrightarrow b^2 = \frac{3a^2}{4}$$

A equação reduzida da elipse é $\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$, ou seja, $\frac{x^2}{a^2}+\frac{y^2}{\frac{3a^2}{4}}=1$.

Como o ponto de coordenadas (-2,3) pertence à elipse, tem-se:

$$\frac{(-2)^2}{a^2}+\frac{3^2}{\frac{3a^2}{4}}=1\Leftrightarrow \frac{4}{a^2}+\frac{12}{a^2}=1\Leftrightarrow \frac{16}{a^2}=1\Leftrightarrow a^2=16$$
 . Como $a>0$, vem $a=4$.

$$\begin{aligned}
\mathbf{10.} \quad w &= -2 + \frac{4e^{i\frac{2\pi}{3}} \times \left(e^{i\frac{\pi}{18}}\right)}{2 + \left(\sqrt{2}e^{i\frac{5\pi}{12}}\right)^3} = -2 + \frac{4e^{i\frac{2\pi}{9}} \times e^{-i\frac{\pi}{18}}}{2 + 2\sqrt{2}e^{i\frac{5\pi}{4}}} = \\
&= -2 + \frac{4e^{i\frac{\pi}{6}}}{2 + 2\sqrt{2}\left(\cos\frac{5\pi}{4} + i\sin\frac{5\pi}{4}\right)} = -2 + \frac{4e^{i\frac{\pi}{6}}}{2 + 2\sqrt{2}\left(-\frac{\sqrt{2}}{2} - \frac{\sqrt{2}}{2}i\right)} = -2 + \frac{4e^{i\frac{\pi}{6}}}{2 - 2 - 2i} = \\
&= -2 + \frac{4e^{i\frac{\pi}{6}}}{-2i} = -2 - \frac{2e^{i\frac{\pi}{6}}}{i} = -2 - \frac{2\left(\cos\frac{\pi}{6} + i\sin\frac{\pi}{6}\right)}{i} = \\
&= -2 - \frac{2\left(\frac{\sqrt{3}}{2} + \frac{1}{2}i\right)}{i} = -2 - \frac{\sqrt{3} + i}{i} = -2 - \left(\sqrt{3} + i\right) \times \left(-i\right) = \\
&= -2 + \sqrt{3}i - 1 = -3 + \sqrt{3}i = 2\sqrt{3}e^{i\frac{5\pi}{6}} \end{aligned}$$

$$a = \lim \left(\frac{n^2 - n}{n^2 + n}\right)^{2n} = \lim \left[\frac{n^2 \left(1 - \frac{1}{n}\right)}{n^2 \left(1 + \frac{1}{n}\right)}\right]^{2n} = \lim \left[\left(\frac{1 - \frac{1}{n}}{1 + \frac{1}{n}}\right)^n\right]^2 =$$

$$= \left[\lim \frac{\left(1 + \frac{-1}{n}\right)^n}{\left(1 + \frac{1}{n}\right)^n}\right]^2 = \left(\frac{e^{-1}}{e}\right)^2 = (e^{-2})^2 = e^{-4}$$

$$\ln(a) = \ln(e^{-4}) = -4$$

12. Uma vez que apenas os números positivos têm logaritmo, é necessário que $\sqrt{3} x > 0$ e que x - 2 > 0.

Ora:
$$\sqrt{3} \, x > 0 \ \land \ x - 2 > 0 \Leftrightarrow x > 0 \land x > 2 \Leftrightarrow x > 2$$

Para x>2 , tem-se:

$$2\log_3\left(\sqrt{3}\,x\right) \ge 3 + \log_3(x-2) \Leftrightarrow \log_3\left[\left(\sqrt{3}\,x\right)^2\right] \ge \log_3(3^3) + \log_3(x-2) \Leftrightarrow 2\log_3\left(\sqrt{3}\,x\right) \ge 3 + \log_3(x-2) \Leftrightarrow 2\log_3\left(\sqrt{3}\,x\right) \ge 2\log_3(x-2) \Leftrightarrow 2\log_3\left(\sqrt{3}\,x\right) \ge 2\log_3(x-2) \leqslant 2\log$$

$$\log_3(3x^2) \geq \log_3[27(x-2)] \Leftrightarrow 3x^2 \geq 27(x-2) \Leftrightarrow x^2 \geq 9(x-2) \Leftrightarrow x^2 - 9x + 18 \geq 0$$

Cálculo auxiliar:
$$x^2-9x+18=0 \Leftrightarrow x=rac{9\pm\sqrt{81-4 imes1\times18}}{2} \Leftrightarrow x=3 \lor x=6$$

Portanto: $x^2 - 9x + 18 \ge 0 \Leftrightarrow x \le 3 \lor x \ge 6$

Tem-se:
$$x>2 \land (x\leq 3 \lor x\geq 6) \Leftrightarrow x\in]2,3] \cup [6,\ +\infty[$$

Assim, o conjunto dos números reais tais que $2\log_3\Bigl(\sqrt{3}\,x\Bigr) \geq 3 + \log_3(x-2)$ é: $]2,3] \cup [6,+\infty[$

13.1 (A)

De acordo com o enunciado, a função f é contínua. Portanto, a função f é contínua, em particular, no ponto 0. Logo, tem-se que: $\lim_{x\to 0^-} f(x) = \lim_{x\to 0^+} f(x)$

Ora:

•
$$\lim_{x \to 0^{-}} f(x) = \lim_{x \to 0^{-}} \frac{e^{kx} - (1+x)^{2}}{x} \stackrel{\frac{0}{0}}{=} \lim_{x \to 0^{-}} \frac{e^{kx} - (1+2x+x^{2})}{x} = \lim_{x \to 0^{-}} \frac{e^{kx} - 1-2x-x^{2}}{x} = \lim_{x \to 0^{-}} \frac{e^{kx} - 1-2x-x^{2$$

$$= \lim_{x \to 0^-} \left(\frac{e^{kx} - 1}{x} \, - \, 2 \, - x \right) = \, - \, 2 \, + \lim_{x \to 0^-} \frac{e^{kx} - 1}{x} \, = \, - \, 2 \, + \lim_{x \to 0^-} \frac{k(e^{kx} - 1)}{kx} \, = \,$$

$$= -2 + k \lim_{x \to 0^{-}} \frac{e^{kx} - 1}{kx} \quad \stackrel{y = kx}{=} \quad -2 + k \lim_{y \to 0^{-}} \frac{e^{y} - 1}{y} = -2 + k \times 1 = k - 2$$

Tem-se, assim: $\lim_{x \to 0^-} f(x) = \lim_{x \to 0^+} f(x) \Leftrightarrow k-2 = 0 \Leftrightarrow k = 2$

13.2 Uma vez que o domínio da função é majorado, só existirá assíntota oblíqua ao gráfico da função f quando $x \to -\infty$.

Note-se também que, como $\,k>0$, tem-se que $\,kx\,$ tende para $\,-\infty\,$ quando $\,x\,$ tende para $\,-\infty\,$. Vem, então:

$$\begin{split} m &= \lim_{x \to -\infty} \frac{f(x)}{x} = \lim_{x \to -\infty} \frac{e^{kx} - 1 - 2x - x^2}{x^2} = \lim_{x \to -\infty} \left(\frac{e^{kx}}{x^2} - \frac{1}{x^2} - \frac{2}{x} - 1 \right) = \\ &= \frac{e^{-\infty}}{+\infty} - \frac{1}{+\infty} - \frac{2}{-\infty} - 1 = \frac{0}{+\infty} - 0 - 0 - 1 = 0 - 0 - 0 - 1 = -1 \\ b &= \lim_{x \to -\infty} [f(x) - mx] = \lim_{x \to -\infty} [f(x) + x] = \lim_{x \to -\infty} \left(\frac{e^{kx} - 1 - 2x - x^2}{x} + x \right) = \\ &= \lim_{x \to -\infty} \left(\frac{e^{kx} - 1 - 2x - x^2 + x^2}{x} \right) = \lim_{x \to -\infty} \left(\frac{e^{kx} - 1 - 2x}{x} \right) = \lim_{x \to -\infty} \left(\frac{e^{kx}}{x} - \frac{1}{x} - 2 \right) = \\ &= \frac{0}{-\infty} - 0 - 2 = -2 \end{split}$$

Assim, a equação reduzida da assíntota oblíqua é: $\,y=\,-\,x-2\,$

13.3 No intervalo $\left]0,\frac{3\pi}{2}\right]$, tem-se: $f'(x)=\left[\sin x\left(1+\cos x\right)\right]'=$ $=\cos x(1+\cos x)+\sin x\left(-\sin x\right)=\cos x+\cos^2 x-\sin^2 x=\cos x+\cos(2x)$ $f'(x)=0\Leftrightarrow\cos x+\cos(2x)=0$

 $\mathsf{Em} \ \ \mathbb{R} \ \mathsf{, tem-se:} \ \ \cos x + \cos(2x) = 0 \Leftrightarrow \cos(2x) = \ -\cos x \, \Leftrightarrow \cos(2x) = \cos(\pi - x) \, \Leftrightarrow \, \cos(\pi - x) = \cos$

$$\Leftrightarrow 2x = \pi - x + 2k\pi \ \lor \ 2x = \ -\pi + x + 2k\pi, \ k \in \mathbb{Z} \Leftrightarrow$$

$$\Leftrightarrow 3x = \pi + 2k\pi \ \lor \ x = \ -\pi + 2k\pi, \ k \in \mathbb{Z} \ \Leftrightarrow x = \frac{\pi}{3} + \frac{2k\pi}{3} \ \lor \ x = \ -\pi + 2k\pi, \ k \in \mathbb{Z}$$

Em $\left]0,rac{3\pi}{2}
ight]$, as soluções da equação $\,f'(x)=0\,$ são $\,rac{\pi}{3}\,$ e $\,\pi$.

Tem-se o seguinte quadro:

x	0	$\frac{\pi}{3}$		π		$\frac{3\pi}{2}$
f'	+	0	_	0	_	_
f	7	Máx.			>	Mín.

Portanto, a função é crescente em $\left[0,\frac{\pi}{3}\right]$ e é decrescente em $\left[\frac{\pi}{3},\frac{3\pi}{2}\right]$.

A função tem um máximo relativo para $\,x=rac{\pi}{3}\,$ e um mínimo relativo para $\,x=rac{3\pi}{2}\,$.

Tem-se:
$$f\left(\frac{\pi}{3}\right) = \sec \frac{\pi}{3} \times \left(1 + \cos \frac{\pi}{3}\right) = \frac{\sqrt{3}}{2} \times \left(1 + \frac{1}{2}\right) = \frac{\sqrt{3}}{2} \times \frac{3}{2} = \frac{3\sqrt{3}}{4}$$
 $f\left(\frac{3\pi}{2}\right) = \sec \frac{3\pi}{2} \times \left(1 + \cos \frac{3\pi}{2}\right) = -1 \times (1 + 0) = -1$

14. (D)

Tem-se:
$$g'(x) = (\ln x)^2 + x \times 2 \times \ln x \times \frac{1}{x} = (\ln x)^2 + 2 \ln x$$

Portanto:
$$g'\left(\frac{1}{e}\right)=\left(\ln\left(\frac{1}{e}\right)\right)^2+2\ln\left(\frac{1}{e}\right)=(-1)^2+2 imes(-1)=-1$$

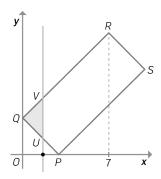
Logo, a reta $\, r \,$ tem equação reduzida da forma $\, y = \, - \, x + b \, . \,$

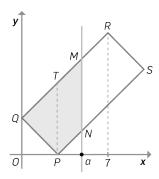
Como
$$g\left(\frac{1}{e}\right)=\frac{1}{e}\, imes\left(\ln\left(\frac{1}{e}\right)\right)^2=\frac{1}{e}$$
 , vem: $\frac{1}{e}=-\frac{1}{e}+b \iff b=\frac{2}{e}$

15. Tal como se mostra nas figuras abaixo, tem-se:

• se $0 < a \le 3$, a área da região sombreada é a área de um triângulo;

ullet se $\,3 < a \leq 7\,$, a área da região sombreada é a soma da área de um triângulo com a área de um paralelogramo.





Tendo em vista o cálculo da área do triângulo $\ [QUV]$, para cada $\ a$ pertencente ao intervalo $\ [0,3]$, comecemos por determinar as equações reduzidas das retas $\ QP$ e $\ QR$.

Tem-se
$$\overrightarrow{PQ}=Q-P=(0,3)-(3,0)=(\,-\,3,3)$$
 , pelo que a reta $\,QP\,$ tem declive $\,-\,1$.

Como a ordenada na origem desta reta é igual a 3, tem-se que a equação reduzida da reta $\,QP\,$ é $y=\,-\,x+3$.

A reta $\,QR\,$ é perpendicular à reta $\,QP\,$, pelo que tem declive 1. Como a ordenada na origem da reta $\,QR\,$ também é igual a 3, tem-se que a equação reduzida desta reta é $\,y=x+3\,.$

Assim, para cada a pertencente ao intervalo [0,3], tem-se:

$$\overline{UV} = a + 3 - (-a + 3) = a + 3 + a - 3 = 2a$$

A área do triângulo $\left[QUV \right]$ é, portanto, $\frac{2a \times a}{2} = a^2$.

Para $\,a=3\,$, obtemos a área do triângulo $\,[PQT]:\,\,3^2=9\,$

Determinemos agora a área do paralelogramo $\ [PTMN]$.

A base é $\,\overline{PT}$. Como o ponto $\,T\,$ pertence à reta $\,QR\,$, cuja equação reduzida é $\,y=x+3\,$, tem-se $\,\overline{PT}=3+3=6$.

Para cada $\,a\,$ pertencente ao intervalo $\,]3,7]$, a altura do paralelogramo é $\,a-3$.

Assim, a área do paralelogramo é $\,6(a-3)=6a-18$.

Portanto, para cada $\,a\,$ pertencente ao intervalo $\,]3,7]$, a área da região sombreada é 9+6a-18=6a-9 .

Logo, f é a função de domínio]0,7] definida por: $f(a) = \left\{ egin{align*} a^2 & \text{se } 0 < a \leq 3 \\ 6a - 9 & \text{se } 3 < a \leq 7 \end{array} \right.$