

PROVA MODELO DA COMPONENTE DE MATEMÁTICA

 Titulares dos cursos de dupla certificação de nível secundário e cursos artísticos especializados –

2024-2025

Nome do(a) Candidato(a):	
Data do Exame:	
Classificação:	Docente:
Observações:	

Instruções gerais:

- Esta prova é composta por 20 questões de escolha múltipla.
- Cada questão tem uma cotação de 1,0 valor.
- Utilize apenas esferográfica azul ou preta.
- Não é permitida a utilização de corretor.
- Responda a todas as questões na folha de prova.
- É permitido a utilização de calculadora científica.
- A Prova tem a duração de 90 minutos.

Prova de Matemática 1

1. Numa escola selecionaram-se aleatoriamente 200 alunos e perguntou-se quantas peças de fruta consumiam diariamente. Os resultados obtidos encontram-se na tabela seguinte.

Nº de peças de fruta consumidas diariamente	0	1	2	3
Nº de alunos	21	29	84	66

A moda e o número médio de peças de fruta consumidas diariamente por cada aluno nesta escola é (arredondado às unidades):

A)	Moda = 2 e Média = 1
•••	1110aa

2. Considerando os dados da questão 1, a percentagem de alunos que consomem mais do que 2 peças de fruta diariamente é:

3. Considere a seguinte amostra relativa ao número de vezes que 15 alunos necessitaram de aulas de apoio para a disciplina de Português: 5, 4, 2, 3, 2, 1, 3, 4, 5, 4, 3, 2, 3, 4, 5 O valor do segundo quartil desta amostra é:

4. Para um almoço de alunos finalistas temos de escolher entre três sopas, cinco pratos principais e seis sobremesas. Quantas são as hipóteses de uma ementa com sopa, prato principal e sobremesa?

A) 50

B) 90

C) 65

D) 75

5. Um saco tem 100 bolas vermelhas e também tem bolas azuis e pretas. A probabilidade de
tirar uma bola preta é 0,2 e a probabilidade de tirar uma bola azul é 0,4. O número total de
holas no saco é·

	ı
A)	200

B)	250
וט	230

6. Considere a seguinte função de probabilidade

Yi=yi	1	2	3	4
$P(Y_i = y_i)$	0,31	F	0,2	0,4

O valor de **F** é:

7. Considere-se a função $f(x) = \frac{5x-3}{2x+7}$ uma função real de variável real. O domínio da função f(x) e a solução da equação f(x) = 1 são, respetivamente:

A)
$$R \setminus \{7/2\} \text{ e x = 10/3}$$

B)
$$R \setminus \{-7/2\} \text{ e x = -10/3}$$

c)
$$R \setminus \{-7/2\} \text{ e x = 10/3}$$

D)
$$R \setminus \{7/2\} \text{ e x = -10/3}$$

8. O conjunto solução da condição $4^x = 64$ é:

- A) 3
- B) !
- **C)** 4
- **D)** 6

9. As assintotas da função $f(x): R \setminus \{-2/3\} \to R$, dada por $f(x) = \frac{9x-4}{3x+2}$ são:

A)
$$x = 2/3 \text{ e y} = 3$$
 B) $x = -2/3 \text{ e y} = -4$ C) $x = -2/3 \text{ e y} = 4$ D) $x = -2/3 \text{ e y} = 3$

10. A solução da inequação $\frac{x^2-16}{1+2x} > 0$, é:

- x ∈] 4, 1/2[U] 4, + ∞[
- x ∈] 4, -1/2[U] -1/2, + ∞[
- x ∈] 4, 1/2[U] 4, + ∞[
- **D)** $x \in]-\infty, -4[U]1/2, 4[$

11. Se $\log x = 7$ e $\log y = 5$, então o valor de $3\log \left(\frac{x}{y}\right)$ é:

12. A solução da equação $2^{(x+2)} - \frac{1}{32^{(x-3)}} = 0$ é:

- A) x = -13/6 B) x = 13/6 C) x = -13/4 D)

13. O valor da expressão $log_2(16 \times 64 \times 8)$ é:

- A)
- 10
- 13

14. Numa fábrica de automóveis, o número N de peças que um operador instala por hora depende do número t de dias de experiência, de acordo com a lei:

$$N(t) = 50 - 42 \times 2^{-0.07t}$$

O número esperado de peças que um operador sem experiência instala por hora é:

- A)
- 10
- 11

15. A solução da equaç	$\tilde{ao} \ 2sen(x) - \sqrt{3} = 0$) no intervalo [0, 90°] é:
-------------------------------	---------------------------------------	----------------------------

- 60°
- 30°
- 20°

16. O valor da expressão
$$2sen\left(\frac{\pi}{3}\right) + 3tg\left(\frac{\pi}{6}\right) + 2cos\left(\frac{\pi}{4}\right) + sen(\pi)$$
 é:

- **A)** $3\sqrt{3} + \sqrt{2}$
- B) $3\sqrt{2} + \sqrt{3}$ C) $2\sqrt{3} + \sqrt{2}$ D) $2\sqrt{2} + \sqrt{3}$

17. Seja
$$f(x) = -x^3 + 4x^2 + 2x$$
 uma função real de variável real. A taxa média de variação da função f no intervalo [-3, 1] é:

- 12
- c) 12 D)
- 13

18. A expressão da derivada da função
$$f(x) = -4x^4 + \frac{2x^3}{3} + 7x$$
 é :

- $-16x^3 + (2/3)x^2$
- **B)** $-16x^3 + (2/3)x + 7$
- c) $-16x^3 + 2x^2 + 7$
- D) $-16x^3 + (2/3)x^2 + 7$

19. A função
$$f(x) = 5x^2 + \frac{3x}{4} + 15$$
 é decrescente no intervalo:

- **A)** $\boxed{}$] $-\infty$, 3/40[**B)** $\boxed{}$]3/40, $+\infty$ [**C)** $\boxed{}$] $-\infty$, -3/40[**D)** $\boxed{}$] 3/40, $+\infty$ [

20. As coordenadas do ponto de máximo local da função $f(x) = 2x^3 + 3x^2$ são:

- (-1, -1)
- B) (1,1)
- C) (1, -1)
- (-1, 1)

FIM