WiSe 2022/23

Stochastik für die Informatik Hausaufgabenblatt 0

Ausgabe: 21.10. - ohne Korrektur, Besprechung in den jeweiligen Tutorien (24. Okt. - 28. Okt.)

Tutoriumsaufgabe 0.1 (Ereignisse)

Ein Gerät bestehe aus $n \in \mathbb{N}$ Komponenten, die mit 1, 2, ..., n durchnummeriert seien. A_j , $j \in \{1, ..., n\}$, bezeichne das Ereignis, dass die Komponente j defekt ist. Drücken Sie die folgenden Ereignisse durch $A_1, ..., A_n$ mithilfe von Mengenoperationen aus:

- (a) keine Komponente ist defekt;
- (b) mindestens eine Komponente ist defekt;
- (c) genau eine Komponente ist defekt;
- (d) höchstens zwei Komponenten sind defekt;
- (e) mindestens zwei Komponenten sind nicht defekt;
- (f) genau zwei Komponenten sind defekt;
- (g) nicht alle Komponenten sind defekt.

Tutoriumsaufgabe 0.2 (Modellierung unterscheidbarer Würfel)

Wir betrachten das Experiment, das aus dem Werfen zweier fairer, unterscheidbarer Würfel besteht.

- (a) Geben Sie einen möglichen Wahrscheinlichkeitsraum (Ω, \mathbb{P}) an.
- (b) Beschreiben Sie die folgenden Ereignisse durch Teilmengen von Ω und bestimmen Sie ihre Wahrscheinlichkeiten:
 - (i) Die Augensumme ist größer oder gleich 9.
 - (ii) Die Augenzahlen beider Würfel sind ungerade.
 - (iii) Die Augensumme ist ungerade.
 - (iv) Das Produkt beider Augenzahlen ist gerade.
 - (v) Das Produkt beider Augenzahlen ist eine Quadratzahl.

Tutoriumsaufgabe 0.3 (Rechenregeln)

Sei (Ω, \mathbb{P}) ein endlicher Wahrscheinlichkeitsraum, d.h. es gelten

i)
$$\mathbb{P}(\emptyset) = 0$$
, $\mathbb{P}(\Omega) = 1$,

ii)
$$\mathbb{P}(A \cup B) = \mathbb{P}(A) + \mathbb{P}(B)$$
 für $A, B \subseteq \Omega$ mit $A \cap B = \emptyset$.

Beweisen Sie die folgenden Aussagen für $A, B \subseteq \Omega$:

- (a) $\mathbb{P}(A \setminus B) = \mathbb{P}(A) \mathbb{P}(B)$ falls $B \subseteq A$;
- (b) $\mathbb{P}(A \cap B \cap C) = \mathbb{P}(A) + \mathbb{P}(B) + \mathbb{P}(C) \mathbb{P}(A \cup B) \mathbb{P}(A \cup C) \mathbb{P}(B \cup C) + \mathbb{P}(A \cup B \cup C);$
- (c) $\mathbb{P}(A \triangle B) = \mathbb{P}(A) + \mathbb{P}(B) 2\mathbb{P}(A \cap B)$.

Hierbei ist $A \triangle B$ die symmetrische Differenz $A \triangle B := (A \setminus B) \cup (B \setminus A)$. Welches Ereignis beschreibt die symmetrische Differenz anschaulich?

Tutoriumsaufgabe 0.4 (Ein Urnenmodell)

In einer Urne befinden sich 100 Kugeln, die mit den Zahlen von 1 bis 100 beschriftet sind. Wir ziehen daraus zufällig eine Kugel. Geben Sie für dieses Experiment einen Wahrscheinlichkeitsraum an und definieren Sie für die nachfolgenden Fragen geeignete Ereignisse.

- (a) Mit welcher Wahrscheinlichkeit ist die gezogene Zahl durch zwei oder drei (oder durch beide) teilbar?
- (b) Mit welcher Wahrscheinlichkeit ist die gezogene Zahl durch zwei oder drei, aber nicht durch beide, teilbar?
- (c) Mit welcher Wahrscheinlichkeit ist die gezogene Zahl durch zwei, drei oder vier teilbar?

Hinweise zur Bearbeitung der Aufgaben:

- Die Hausaufgabenblätter werden Freitags auf Moodle veröffentlicht und enthalten (mit Ausnahme diesen Blattes) Hausaufgaben, die in der darauffolgenden Woche entweder vor der Vorlesung am Freitag um 12:00 Uhr in Hörsaal V abzugeben sind oder vor Freitag 12:00 Uhr in das Schließfach Ihres Tutors (Robert-Mayer Straße 6-8, 3. Stock) eingeworfen werden müssen.
- Die Hausaufgaben werden anschließend in den Tutorien der nächsten Woche besprochen.