Stochastik für die Informatik, Vorlesung 3

Inhalt

- Bedingte Wahrscheinlichkeit
- Formel von der Gesamtwahrscheinlichkeit
- Mehrstufige Experimente

Lernziele

- den Begriff der bedingten Wahrscheinlichkeit kennen und damit rechnen können
- ► Mit mehrstufigen Experimenten arbeiten können
- Die Formel von der Gesamtwahrscheinlichkeit anwenden können

Vorkenntnisse

Stoff der ersten beiden Vorlesungen

Bedingte Wahrscheinlichkeit

(Beispiel 2.1) Würfeln mit einem fairen Würfel, $\Omega = \{1,...,6\}$. Wir wissen:

$$\mathbb{P}(1) = \mathbb{P}(2) = \dots = \mathbb{P}(6) = \frac{1}{6}.$$

Nun würfeln wir verdeckt, und jemand sagt uns, dass die gewürfelte Zahl gerade ist.

Wie verändern sich die Wahrscheinlichkeiten unter dieser Zusatzinformation?

Es müssen neue Wahrscheinlichkeiten $\tilde{\mathbb{P}}$ für die neue Situation bestimmt werden. Intuition, bzw. Definition von Wahrscheinlichkeitsmaßen:

$$\tilde{\mathbb{P}}(2) = \tilde{\mathbb{P}}(4) = \tilde{\mathbb{P}}(6) = \frac{1}{3},$$

und

$$\tilde{\mathbb{P}}(1) = \tilde{\mathbb{P}}(3) = \tilde{\mathbb{P}}(5) = 0.$$

Bedingte Wahrscheinlichkeit

(Def. 2.1) Sei (Ω, \mathbb{P}) ein Wahrscheinlichkeitsraum, und seien $A, B \subseteq \Omega$ Ereignisse, mit $\mathbb{P}(B) > 0$. Die bedingte Wahrscheinlichkeit für A gegeben B ist definiert als

$$\mathbb{P}(A \mid B) := \frac{\mathbb{P}(A \cap B)}{\mathbb{P}(B)}$$

- ▶ Die Formel ist nicht symmetrisch, A und B haben unterschiedliche Rollen.
- ▶ (Beispiel 2.2: Würfeln unter Zusatzinformation)

Bedingte Wahrscheinlichkeit

Für jedes $B \subseteq \Omega$ ist $\mathbb{P}(\cdot \mid B) : A \mapsto \mathbb{P}(A \mid B)$ ein Wahrscheinlichkeitsmaß (vgl. Vorlesung 2).

► (Beispiel 2.3: Ausfallwahrscheinlichkeit/Sterbewahrscheinlichkeit)

Lebenserwartung/Sterbewahrscheinlichkeit

8 National Vital Statistics Reports, Vol. 54, No. 14, April 19, 2006

Table 1. Life table for the total population: United States, 2003

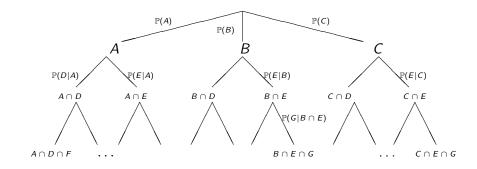
Table 1. Life table for the total population: Officed States, 2003					Click here for	Click here for spreadhseet version	
	Probability of dying between ages x to x+1	Number surviving to age x	Number dying between ages x to x+1	Person-years lived between ages x to x+1	Total number of person-years lived above age x	Expectation of life at age x	
Age	q(,,)	/(_x)	a(x)	L(,)	T(,,)	e(x)	
0-1 1-2 2-3 3-4 4-5 5-6 6-7 7-8 8-9 9-10 10-11. 11-12. 12-13	0.000177 0.000160 0.000147 0.000132 0.000117 0.000109 0.000118 0.000157	100,000 99,313 99,267 99,233 99,208 99,171 99,156 99,141 99,128 99,116 99,105 99,094	687 47 33 25 19 18 16 15 13 12 11 12	99,394 99,290 99,250 99,221 99,199 99,163 99,163 99,148 99,134 99,122 99,111 99,100 99,086	7,743,016 7,643,622 7,544,532 7,445,082 7,345,861 7,246,663 7,147,482 7,048,319 6,949,171 6,850,036 6,750,914 6,651,803 6,552,704	77.4 77.0 76.0 75.0 74.0 73.1 72.1 70.1 69.1 68.1 67.1 66.1	
13–14 14–15 15–16 16–17 17–18 18–19	0.000577 0.000684 0.000769	99,078 99,055 99,022 98,976 98,919 98,851 98,775	23 34 46 57 68 76 82	99,067 99,038 98,999 98,947 98,885 98,813 98,734	6,453,618 6,354,551 6,255,513 6,156,514 6,057,566 5,958,681 5,859,868	65.1 64.2 63.2 62.2 61.2 60.3 59.3	

Mehrstufige Experimente

Zufallsexperimente, welche in mehreren Schritten ablaufen, können in Baumform dargestellt werden:

- ► Knoten des Baumes: Ergebnisse der jeweiligen Stufe
- Kanten ("Äste") des Baumes: bedingte Wahrscheinlichkeit des entsprechenden Ausgangs, gegeben das Ergebnis der vorherigen Stufe
- "Blätter" des Baumes: Endergebnis des Experiments entsprechend der Zwischenergebnisse

Mehrstufige Experimente: Baumdarstellung



Mehrstufige Experimente: Multiplikationsregel

Umformen der Definition der bedingten Wahrscheinlichkeit führt auf

$$\mathbb{P}(A \cap B) = \mathbb{P}(B) \cdot \mathbb{P}(A|B),$$

 $A, B \subseteq \Omega$. Daraus folgt:

Multiplikationsregel: In einem mehrstufigen Experiment berechnet sich die Wahrscheinlichkeit eines Ergebnisses durch Multiplikation der Wahrscheinlichkeiten entlang der Äste, die zum Blatt mit diesem Ergebnis führen.

- (Beispiel 2.4, 2.5: Test auf Krankheit)
- (Beispiel: Urnenmodelle)

Formel von der Gesamtwahrscheinlichkeit

(Satz 2.1) Sei (Ω, \mathbb{P}) ein Wahrscheinlichkeitsraum, und seien $A, B \subseteq \Omega$ Ereignisse, mit $0 < \mathbb{P}(B) < 1$. Dann gilt

$$\mathbb{P}(A) = \mathbb{P}(A|B)\mathbb{P}(B) + \mathbb{P}(A|B^c)\mathbb{P}(B^c).$$

- (Beweis siehe Vorlesung)
- ► (Beispiel 2.6: Test auf Krankheit (Fortsetzung))

Mehrstufige Experimente: Additionsregel

Die Formel von der Gesamtwahrscheinlichkeit kann auch anders formuliert werden:

Additionsregel: In einem mehrstufigen Experiment berechnet sich die Wahrscheinlichkeit für ein Ereignis durch Addition der entsprechenen Einzelwahrscheinlichkeiten der Ergebnisse auf den Blättern des Baumes, welche in das Ereignis eingehen.

(Skizze siehe Vorlesung)

Allgemeine Formel von der Gesamtwahrscheinlichkeit

Sei (Ω, \mathbb{P}) ein Wahrscheinlichkeitsraum, und sei A ein Ereignis. Sei $B_1, ..., B_n$ eine disjunkte Zerlegung von Ω . Dann gilt

$$\mathbb{P}(A) = \sum_{i=1}^{n} \mathbb{P}(A|B_i)\mathbb{P}(B_i).$$

Disjunkte Zerlegung bedeutet dabei $\mathbb{P}(B_i) > 0$ für alle i = 1, ..., n, $B_i \cap B_j = \emptyset$ für $i \neq j$, und $\bigcup_{i=1}^n B_i = \Omega$.

(Besipiel 2.7: Signalübermittlung durch mehrere Kanäle)

Formel von der Gesamtwahrscheinlichkeit

