# Mathematische und statistische Methoden für Pharmazeut\*innen

Prof. Dr. Noemi Kurt FB 12, Institut für Mathematik, Goethe-Universität Frankfurt

Sommersemester 2023

## Vorlesung 10

#### Inhalt

- Eine Anwendung der Diffusionsgleichung
- Beschreibende Statistik: Daten und ihre Darstellungen
- Kenngrößen von Daten
- Häufigkeiten und Wahrscheinlichkeiten
- ▶ Berechnung von elementaren Wahrscheinlichkeiten

### Lernziele

- Ein Anwendungsbeispiel der Diffusionsgleichung kennen
- Verschiedene Arten von Daten und Möglichkeiten für ihre Darstellung kennen
- Empirisches Mittel, Median, empirische Varianz und empirische Perzentile berechnen und interpretieren können
- ► Elementare Wahrscheinlichkeiten berechnen können

### Benötigte Vorkenntnisse

Funktionen, Ableitung, Ableitungsregeln; Zahlenmengen

# Ein Beispiel für partielle Differentialgleichungen

Partielle Differentialgleichungen enthalten partielle Ableitungen nach verschiedenen Variablen.

Beispiel: Diffusion (erstes Fick'sches Gesetz)

$$\frac{\partial m}{\partial t} = -DA \frac{\partial c}{\partial x},$$

Dabei ist  $\frac{\partial m}{\partial t}$  die Masse, welche pro Zeiteinheit t durch die Fläche A (z.B.) Membran, und  $\frac{\partial c}{\partial x}$  der Konzentrationsgradient entgegen der Flußrichtung. Die Zahl D ist die Diffusionskonstante (abhängig von der Substanz).

Beispiel: Diffusion (zweites Fick'sches Gesetz) Aus dem ersten Fick'schen Gesetz und der Massenerhaltung ( $\frac{\partial c}{\partial t} = -A \frac{\partial^2 m}{\partial x \partial t}$ ) folgt

$$\frac{\partial c}{\partial t} = D \frac{\partial^2 c}{\partial x^2}.$$

### Beschreibende Statistik

#### Eine Messreihe

| 1    | 2   | 3   | 4   | 5   | 6   | 7   | 8   | 9   | 10   | 11  | 12  | 13  | 14   |
|------|-----|-----|-----|-----|-----|-----|-----|-----|------|-----|-----|-----|------|
| 10.9 | 6.8 | 9.5 | 6.9 | 8.2 | 3.4 | 6.2 | 8.6 | 5.3 | 10.7 | 8.1 | 8.0 | 8.9 | 10.7 |

Wie kann man diese Daten geeignet darstellen?

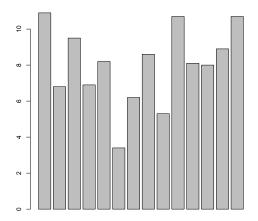
- ▶ Tabelle
- ▶ Plot (Barplot, Punktplot,...)
- Histogramm

Welche Informationen kann man aus diesen Daten ablesen?

- Häufigkeiten
- Mittelwert
- Streuung
- Ausreißer
- **>** ...

## Tabelle und Plot

|   | 1    | 2   | 3   | 4   | 5   | 6   | 7   | 8   | 9   | 10   | 11  | 12  | 13  | 14   |
|---|------|-----|-----|-----|-----|-----|-----|-----|-----|------|-----|-----|-----|------|
| ĺ | 10.9 | 6.8 | 9.5 | 6.9 | 8.2 | 3.4 | 6.2 | 8.6 | 5.3 | 10.7 | 8.1 | 8.0 | 8.9 | 10.7 |



### Häufigkeiten

(Def.) Die absolute Häufigkeit H(x) von x gibt an, wie oft x als Messwert auftritt. Die relative Häufigkeit von x ist h(x) = H(x)/n, wenn insgesamt n Messwerte vorliegen.

### Im Beispiel:

| 1    | 2   | 3   | 4   | 5   | 6   | 7   | 8   | 9   | 10   | 11  | 12  | 13  | 14   |
|------|-----|-----|-----|-----|-----|-----|-----|-----|------|-----|-----|-----|------|
| 10.9 | 6.8 | 9.5 | 6.9 | 8.2 | 3.4 | 6.2 | 8.6 | 5.3 | 10.7 | 8.1 | 8.0 | 8.9 | 10.7 |

$$H(10.9) = 1$$
,  $H(10.7) = 2$ ,  $H(4.0) = 0$ .

$$h(10.9) = \frac{1}{14}, \quad h(10.7) = \frac{1}{7}, \quad h(4.0) = 0.$$



# Klassen, Häufigkeiten und Histogramme

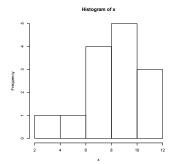
Absolute und relative Häufigkeiten können leicht in Tabellen dargestellt werden. Beispiel:

| 3.4 | 5.3 | 6.2 | 6.8 | 6.9 | 8.0 | 8.1 | 8.2 | 8.6 | 8.9 | 9.5 | 10.7 | 10.9 |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|
| 1   | 1   | 1   | 1   | 1   | 1   | 1   | 1   | 1   | 1   | 1   | 2    | 1    |

#### Zusammenfassen von Werten in Klassen:

| Klasse     | [2,4) | [4,6) | [6,8) | [8,10) | [10,12) |
|------------|-------|-------|-------|--------|---------|
| Häufigkeit | 1     | 1     | 3     | 5      | 3       |

Darstellung von Häufigkeiten (!) als Histogramm:

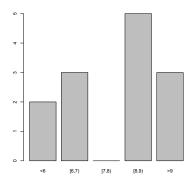


# Klassen, Häufigkeiten und Histogramme

### Andere Klasseneinteilung:

| Klasse     | < 6 | [6,7) | [7,8) | [8,9) | > 9 |
|------------|-----|-------|-------|-------|-----|
| Häufigkeit | 2   | 3     | 0     | 5     | 3   |

#### Zugehöriges Histogramm:



- Wahl der Klasseneinteilung hängt davon ab, was man darstellen möchte
- Achsenbeschriftung!

### Kenngrößen von Daten

(Def.) Seien  $x_1, ..., x_n$  Messwerten/Daten. Das empirische Mittel von ist definiert als

$$\bar{\mu}_{\mathsf{x}} := \frac{1}{n} \sum_{i=1}^{n} x_i$$

Der Median von  $(x_1, ..., x_n)$  ist definiert als der Wert in der Mitte der aufsteigend geordneten Liste der Messwerte.

Das p-te Quantil ist dasjenige  $x_i$ , für welches ein Anteil p der Messwerte in der geordneten Liste links von  $x_i$  liegen, also kleiner sind. Perzentile sind Quantile mit p=0.1,0.2,0.3...

# Kenngrößen: Beispiel

| 1    | 2   | 3   | 4   | 5   | 6   | 7   | 8   | 9   | 10   | 11  | 12  | 13  | 14   |
|------|-----|-----|-----|-----|-----|-----|-----|-----|------|-----|-----|-----|------|
| 10.9 | 6.8 | 9.5 | 6.9 | 8.2 | 3.4 | 6.2 | 8.6 | 5.3 | 10.7 | 8.1 | 8.0 | 8.9 | 10.7 |

► Empirisches Mittel: 8.014

#### Geordnete Daten:

| 3.4 | 5.3 | 6.2 | 6.8 | 6.9 | 8.0 | 8.1 | 8.2 | 8.6 | 8.9 | 9.5 | 10.7 | 10.7 | 10.9 |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|
|     |     |     |     |     |     |     |     |     |     |     |      |      |      |

2 Werte in der Mitte (da n=14 gerade): 8.1, 8.2. Median in diesem Fall  $\frac{8.1+8.2}{2}=8.15$ .

# Perzentile: Beispiel

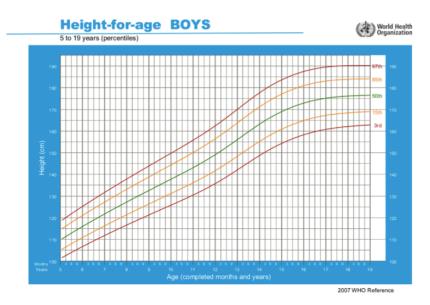


Abbildung 19: Wachstum von Jungen im Alter von 5 bis 19 Jahren

### Kenngrößen von Daten

(Def.) Seien  $x_1, ..., x_n$  Messwerten/Daten. Die empirische Varianz ist definiert als

$$\bar{s}_{x}^{2} := \frac{1}{n-1} \sum_{i=1}^{n} (x_{i} - \bar{\mu}_{x})^{2}$$

Die empirische Standardabweichung  $\bar{s}$  ist die Wurzel aus der empirischen Varianz.

- Empirisches Mittel: Durchschnittswert
- Empirische Varianz: Maß für die Streuung

#### Excel-Befehle:

- =Mittelwert(Wertebereich)
- =Median(Wertebereich)
- =Varianz(Werteberich), =Stabw(Wertebereich)
- ightharpoonup =Quantil(Wertebereich, p) (z.B. p = 0.1)



## Relative Häufigkeiten und Wahrscheinlichkeiten

Intuition: Wenn die Zahl der Messungen n groß ist, so ist die relative Häufigkeit eines Messwertes  $h_n(x)$  ungefähr gleich der theoretischen Wahrscheinlichkeit, dass dieser Messwert auftritt. Formal:

$$\lim_{n\to\infty}h_n(x)=\mathbb{P}(x),$$

bzw.

$$h_n(x) \approx \mathbb{P}(x).$$

Das P steht für Wahrscheinlichkeit (probability, probabilitas).

Dies nennt man auch (empirisches) Gesetz der großen Zahlen.

Relative Häufigkeit (aus Messungen) als Schätzer für die Wahrscheinlichkeit.

# Ereignisse und Mengen

Ein einzelner Messwert ist eine Zahl  $x \in \mathbb{R}$ , welche als Ergebnis eines zufälligen Vorgangs interpretiert wird.

Beispiel: Von n zufällig ausgewählten Probanden werden Alter x, Gewicht y und (systolischer) Blutdruck z gemessen.

Von Interesse sind Ereignisse, welche aus diesen Daten gebildet werden können. Dies sind Mengen:

- ▶ Der Proband ist mindestens 60:  $A = \{x : x \ge 60\}$
- ▶ Der Proband wiegt unter 80 kg:  $B = \{y : y < 80\}$
- ▶ Der systolische Blutdruck liegt zwischen 125 und 140:  $C = \{z : z \in [125, 140]\} = \{z : 125 < z < 140\}.$

Davon abgeleitete Ereignisse:

- ▶  $A \cap B$ : Ereignis A und B treten ein, also der Proband ist mindestens 60 Jahre alt und wiegt höchstens 80 kg.
- ▶  $A \cup B$ : Ereignis A oder B (oder beide) treten ein
- ▶ A<sup>c</sup> das Gegenteil von A tritt ein
- $\triangleright$   $(A \cup B) \cap C^c...$

