Mathematische und statistische Methoden für Pharmazeut*innen

Prof. Dr. Noemi Kurt FB 12, Institut für Mathematik, Goethe-Universität Frankfurt

Sommersemester 2023

Vorlesung 8

Inhalt

- Lokale und globale Extrema
- Partielle Ableitungen
- Extremwerte in mehreren Variablen
- ▶ Differentialgleichungen: Wichtige Typen und Lösungen

Lernziele

- Lokale und globale Extrema bestimmen können
- ► Funktionen von mehreren Variablen kennen und Ableitungen berechnen können
- Den Zusammenhang zwischen Ableitung und Eigenschaften der Funktion kennen
- Wichtige Differentialgleichungstypen (Reaktionsgleichungen) und Lösungen kennen

Benötigte Vorkenntnisse

► Funktionen, Ableitung, Ableitungsregeln, Extremwerte

Extremwerte

Sei f eine Funktion, und a ein Punkt aus dem Definitionsbereich von f.

- ▶ f hat in a ein lokales Minimum, falls $f(a) \le f(x)$ für alle x in einer kleinen Umgebung von a gilt.
- ▶ f hat in a ein globales Minimum, falls $f(a) \le f(x)$ für alle x im Definitionsbereich von f gilt.
- ▶ f hat in a ein lokales Maximum, falls $f(a) \ge f(x)$ für alle x in einer kleinen Umgebung von a gilt.
- ▶ f hat in a ein globales Maximum, falls $f(a) \ge f(x)$ für alle x im Definitionsbereich von f gilt.
- ▶ (Bild an der Tafel)

Hinreichendes Kriterium für Extrema

(Satz) Es sei f zweimal differenzierbar, mit f'(a) = 0.

- ▶ Ist f''(a) < 0, so hat f in a ein lokales Maximum
- ▶ Ist f''(a) > 0, so hat f in a ein lokales Minimum.

Falls f''(a) = 0 ist, sind weitere Untersuchungen notwendig.

Ein Punkt a in dem f'(a) = 0 ist, heißt kritischer Punkt.

Extremstellen am Rand des Definitionsbereichs oder an nicht differenzierbaren Stellen werden von diesem Kriterium nicht erfasst!

(Beispiele an der Tafel)

Funktionen von mehreren Variablen

Bisher: f(x), mit einer Inputvariablen x

Oft: Mehrere Variablen sind relevant.

Beispiele:

- Dosierung eines Medikamentes abhängig von Körpergewicht, Alter, Geschlecht, weiteren Parametern wie Blutdruck, aktueller Gesundheitszustand...
- Temperaturverteilung abhängig von Zeit und Ort
- ► Thermodynamik: Enthalpie (Wärmeinhalt) abhängig von Druck, Volumen und innerer Energie

Mathematisch: Schreibweise $f(x, y), f(x, y, z), f(x_1, ..., x_n)$

Beispiele:

$$f(x,y) = 4x^2 \sin(y), f(x,y,z) = 2xy + e^{y^2 - z}, H(U,p,V) = U + pV$$



Partielle Ableitungen

Die partielle Ableitung einer Funktion von mehreren Variablen nach einer Variablen x wird als normale Ableitung berechnet, wobei man die anderen Variablen "festhält", also wie Konstanten behandelt.

Schreibweise:
$$\frac{\partial f(x,y,z)}{\partial x}$$
, $\frac{\partial f(x,y,z)}{\partial y}$, $\frac{\partial f(x,y,z)}{\partial z}$

Interpretation: Steigung/Veränderung der Funktion in x, y, z, ... Richtung.

(Beispiele an der Tafel).

Zweite Ableitungen: $\frac{\partial^2 f(x,y,z)}{\partial x^2}$, $\frac{\partial^2 f(x,y,z)}{\partial x \partial y}$, ...

Es gelten die üblichen Ableitungsregeln.

Partielle Ableitungen

Totales Differential: Verwendung z.B. in der Thermodynamik als

$$df(x,y,z) = \frac{\partial f(x,y,z)}{\partial x} dx + \frac{\partial f(x,y,z)}{\partial y} dy + \frac{\partial f(x,y,z)}{\partial z} dz,$$

wobei dx, dy, dz die "infinitesimalen Veränderungen" der Variablen darstellen sollen.

Mathematisch präzisere Interpretation mit Hilfe von Integralen.

Differentialgleichungen

Differentialgleichungen (DGLn) stellen einen Zusammenhang zwischen Funktionen und ihren Ableitungen her. Sie sind omnipräsent in der mathematischen Beschreibungen von natürlichen Prozessen.

Beispiel: In vielen chemischen Reaktionen ist die Reaktionsgeschwindigkeit proportional zur vorhandenen Stoffmenge (Reaktionen 1. Ordnung). Nimmt also mit Dauer des Versuchs die Konzentration ab, so verringert sich auch die Geschwindigkeit.

- Sei c(t) die Konzentration des Stoffes in Abhängigkeit von der Zeit t
- ► Reaktionsgeschwindigkeit entspricht der zeitlichen Veränderung der Konzentration, also -c'(t) (Vorzeichen!).
- ► Reaktionsgeschwindigkeit proportional zur Konzentration bedeutet also: Es gibt eine Zahl *k*, so dass

$$c'(t) = -k \cdot c(t)$$

Reaktionsgleichung 1. Ordnung

Gesucht ist also eine Funktion c(t), welche die Differentialgleichung

$$c'(t) = -kc(t)$$

erfüllt.

Lösung:

$$c(t) = c_0 \cdot e^{-kt}$$

erfüllt diese DGL für jede Zahl $c_0 \in \mathbb{R}$. Wir müssen hier $c_0 = c(0)$ die Anfangskonzentration wählen.

Zur Erinnerung: Dies entspricht einem exponentiellen Zerfall!

k ist die Reaktionskonstante (Einheit: 1/sec, 1/min...)

Reaktionen 0. Ordnung

Reaktion 0. Ordnung: DGL

$$c'(t) = -k$$

Lösung:

$$c(t)=c_0-kt$$

mit $c_0 = c(0)$ Anfangskonzentration. Hier ist die Reaktionsgeschwindigkeit unabhängig von der Stoffmenge.