Vorlesung 11

Inhalt

- Häufigkeiten und Wahrscheinlichkeiten
- Bedingte Wahrscheinlichkeiten
- Satz von Bayes

Lernziele

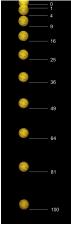
- Mit Ereignissen und Wahrscheinlichkeiten rechnen können
- Bedingte Wahrscheinlichkeiten kennen
- Die Aussage des Satzes von Bayes und seine Anwendungen kennen

Benötigte Vorkenntnisse

Mengen, Mengenoperationen, Bruchrechnen

Deterministische und zufällige Vorgänge

Was können wir vorhersagen?



(c) by Michael Maggs

 Freier Fall: Falldauer eines Objektes bei gegebener Fallhöhe läßt sich vorhersagen (falls Luftwiderstand vernachlässigbar)

Deterministische Vorgänge laufen immer gleich ab. Aus Beobachtungen lassen sich künftige Versuche vorhersagen.

Was können wir vorhersagen?

Würfelwurf: Das Ergebnis eines einzelnen Würfelwurfes lässt sich nicht vorhersagen.

(c) public domain

Wiederholter Würfelwurf:
 Würfelt man 600 mal, so würde man gerne darauf wetten,
 dass die Anzahl an Einsern zwischen 85 und 115 liegt.

Die genaue Anzahl lässt sich wieder nicht vorhersagen.

Aber: Eine Aussage über die Verteilung ist möglich (die besser ist als reines Raten.)

Häufigkeiten und Wahrscheinlichkeiten

Empirisch stellt man fest: Bei Wiederholung eines Zufallsexperiments stabilisieren sich die relativen Häufigkeiten der möglichen Ergebnisse.

Beispiel: Beim Würfelwurf stabilisiert sich die relative Häufigkeit jeder der Zahlen $\{1, 2, ..., 6\}$ bei $\frac{1}{6}$.

Fazit:

Das Ergebnis eines einzelnen zufälligen Vorgangs läßt sich nicht vorhersagen. Aber: Eine Aussage über die Verteilung ist möglich (die besser ist als reines Raten).

Abstraktionsschritt:

Verwende empirisch ermittelte Verteilung als Verteilung jedes Einzelexperiments!

Beispiel:

Wir <u>nehmen an</u>, daß bei einem einzelnen Würfelwurf jede der Zahlen $\{1, 2, ..., 6\}$ die Wahrscheinlichkeit $\frac{1}{6}$ hat.

Zufallsvariablen und Verteilung

Als Zufallsgröße oder Zufallsvariable bezeichnet man das (Mess-)Ergebnis eines zufälligen Vorgangs.

Der Wertebereich \mathcal{S} (engl. state space) einer Zufallsgröße ist die Menge aller möglichen Werte.

Die Verteilung einer Zufallsvariablen X weist jeder Menge $A \subseteq \mathcal{S}$ die Wahrscheinlichkeit $\mathbb{P}(X \in A)$ zu, dass X einen Wert in A annimmt

Eine Aussage, deren Wahrheitsgehalt durch die Werte einer oder mehrerer Zufallsvariablen bestimmt wird, nennt man ein Ereignis.

Man notiert diese oft mit Mengenklammern, z.B. $\{X \in A\}$

Für Zufallsvariablen werden üblicherweise Großbuchstaben verwendet (z.B. X, Y, Z), für konkrete Werte Kleinbuchstaben.

Beispiele für Zufallsvariablen

Beispiel: Würfelwurf W = Augenzahl des nächsten Würfelwurfs.

$$S = \{1, 2, \dots, 6\}$$

 $\mathbb{P}(W = 1) = \dots = \mathbb{P}(W = 6) = \frac{1}{6}$

Die Verteilung erhält man aus einer Symmetrieüberlegung oder aus einer langen Würfelreihe.

Beispiel: Geschlecht *X* bei Neugeborenen.

$$S = \{$$
,,männlich",,,weiblich" $\}$
 $\mathbb{P}(X =$,,männlich" $) = 51.2\%$
 $\mathbb{P}(X =$,weiblich" $) = 48.8\%$

Die Verteilung erhält man aus einer langen Beobachtungsreihe.

Beispiel: Körpergrößenverteilung in Deutschland. Die Verteilung erhält man aus einer langen Messreihe.

Rechenbeispiel:

Beispiel Würfelwurf *W*:

$$P(\{W=2\} \cup \{W=3\}) = \mathbb{P}(W \in \{2,3\}) = \frac{2}{6} = \frac{1}{6} + \frac{1}{6}$$

= $\mathbb{P}(W=2) + \mathbb{P}(W=3)$

$$\mathbb{P}(W \in \{1,2\} \cup \{3,4\}) = \frac{4}{6} = \frac{2}{6} + \frac{2}{6} = \mathbb{P}(W \in \{1,2\}) + \mathbb{P}(W \in \{3,4\})$$

Vorsicht:

$$\mathbb{P}(\textit{W} \in \{2,3\}) + \mathbb{P}(\textit{W} \in \{3,4\}) \neq \mathbb{P}(\textit{W} \in \{2,3,4\})$$

Rechenregeln:

Sei X eine Zufallsgröße mit Wertebereich S.

- ▶ $0 \le \mathbb{P}(X \in A) \le 1$ für jede Teilmenge $A \subseteq S$
- ▶ $\mathbb{P}(X \in \mathcal{S}) = 1$
- ▶ Sind $A, B \subseteq S$ disjunkt, d.h. $A \cap B = \emptyset$,

$$\mathbb{P}(X \in A \cup B) = \mathbb{P}(X \in A) + \Pr(X \in B),$$

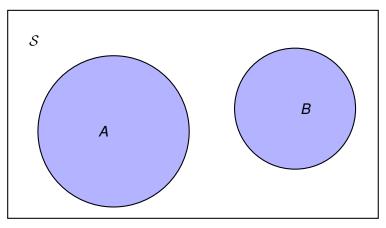
insbesondere $\mathbb{P}(X \in A^c) = 1 - \Pr(X \in A)$ mit $A^c = S \setminus A$

Allgemein gilt

$$\mathbb{P}(X \in A \cup B) = \mathbb{P}(X \in A) + \mathbb{P}(X \in B) - \mathbb{P}(X \in A \cap B)$$

("Einschluss-Ausschluss-Formel")

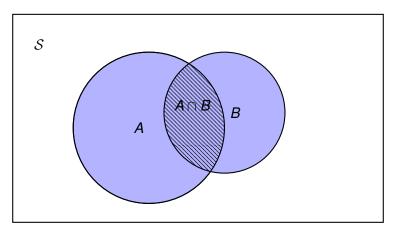
Rechenregeln (grafische Interpretation)



$$\text{für } A,B\subset \mathcal{S} \text{ mit } A\cap B=\emptyset \text{ gilt }$$

$$\mathbb{P}(X \in A \cup B) = \mathbb{P}(X \in A) + \mathbb{P}(X \in B)$$

Rechenregeln (grafische Interpretation)



für allgemeine $A, B \subset \mathcal{S}$ gilt

$$\mathbb{P}(X \in A \cup B) = \mathbb{P}(X \in A) + \Pr(X \in B) - \mathbb{P}(X \in A \cap B)$$

Bedingte Wahrscheinlichkeit

Ws des Ereignisses $\{Y \in B\}$ unter der Bedingung $\{X \in A\}$

$$\mathbb{P}(Y \in B \mid X \in A) := \frac{\mathbb{P}(Y \in B, X \in A)}{\mathbb{P}(X \in A)}$$
(*)

"bedingte Ws von $\{Y \in B\}$ gegeben $\{X \in A\}$ " Beachte:

$$\mathbb{P}(X \in A, Y \in B) = \mathbb{P}(X \in A) \cdot \mathbb{P}(Y \in B \mid X \in A)$$

(*) in Worten ausgedrückt:

Die Ws des Ereignisses $\{X \in A, Y \in B\}$ läßt sich in zwei Schritten berechnen:

- ▶ Zunächst muss das Ereignis $\{X \in A\}$ eintreten.
- ▶ Die Ws hiervon wird multipliziert mit der Ws von $\{Y \in B\}$, wenn man schon weiß, daß $\{X \in A\}$ eintritt.

Bedingte Wahrscheinlichkeit

Ws des Ereignisses $\{Y \in B\}$ unter der Bedingung $\{X \in A\}$

$$\mathbb{P}(Y \in B \mid X \in A) := \frac{\mathbb{P}(Y \in B, X \in A)}{\mathbb{P}(X \in A)}$$
(*)

"bedingte Ws von $\{Y \in B\}$ gegeben $\{X \in A\}$ " Beachte:

$$\mathbb{P}(X \in A, Y \in B) = \mathbb{P}(X \in A) \cdot \mathbb{P}(Y \in B \mid X \in A)$$

(*) in Worten ausgedrückt:

Die Ws des Ereignisses $\{X \in A, Y \in B\}$ läßt sich in zwei Schritten berechnen:

- ▶ Zunächst muss das Ereignis $\{X \in A\}$ eintreten.
- ▶ Die Ws hiervon wird multipliziert mit der Ws von $\{Y \in B\}$, wenn man schon weiß, daß $\{X \in A\}$ eintritt.

Bedingte Wahrscheinlichkeit

Ws des Ereignisses $\{Y \in B\}$ unter der Bedingung $\{X \in A\}$

$$\mathbb{P}(Y \in B \mid X \in A) := \frac{\mathbb{P}(Y \in B, X \in A)}{\mathbb{P}(X \in A)} \quad (*)$$

"bedingte Ws von $\{Y \in B\}$ gegeben $\{X \in A\}$ " Beachte:

$$\mathbb{P}(X \in A, Y \in B) = \mathbb{P}(X \in A) \cdot \mathbb{P}(Y \in B \mid X \in A)$$

(*) in Worten ausgedrückt:

Die Ws des Ereignisses $\{X \in A, Y \in B\}$ läßt sich in zwei Schritten berechnen:

- ▶ Zunächst muss das Ereignis $\{X \in A\}$ eintreten.
- ▶ Die Ws hiervon wird multipliziert mit der Ws von $\{Y \in B\}$, wenn man schon weiß, daß $\{X \in A\}$ eintritt.

Beispiel zweifacher Würfelwurf:

Sei W_1 (bzw. W_2) die Augenzahl des ersten (bzw. zweiten) Würfels.

Sei S die Summe der Augenzahlen, d.h. $S = W_1 + W_2$.

Was ist die Wahrscheinlichkeit, dass S=5 ist, wenn der erste Würfel die Augenzahl $W_1=2$ zeigt?

$$\mathbb{P}(S = 5 \mid W_1 = 2) \stackrel{!}{=} \mathbb{P}(W_2 = 3) \\
= \frac{1}{6} = \frac{1/36}{1/6} = \frac{\mathbb{P}(W_1 = 2, W_2 = 3)}{\mathbb{P}(W_1 = 2)} \\
= \frac{\mathbb{P}(S = 5, W_1 = 2)}{\mathbb{P}(W_1 = 2)}$$

Die Formel von Bayes

Seien X, Y Zufallsgrößen mit Wertebereichen S_X bzw. S_Y , $A \subset S_X$, $B \subset S_Y$, dann gilt

$$\mathbb{P}(Y \in B \mid X \in A)$$

$$= \frac{\mathbb{P}(X \in A \mid Y \in B) \cdot \mathbb{P}(Y \in B)}{\mathbb{P}(X \in A \mid Y \in B) \cdot \mathbb{P}(Y \in B) + \mathbb{P}(X \in A \mid Y \in B^c) \cdot \mathbb{P}(Y \in B^c)}$$

Denn

$$\label{eq:Zahler} \begin{split} \mathsf{Z\ddot{a}hler} &= \mathbb{P}(X \in A, Y \in B) \\ \mathsf{Nenner} &= \mathbb{P}(X \in A, Y \in B) + \mathbb{P}(X \in A, Y \in B^c) \\ &= \mathbb{P}(X \in A, Y \in B \cup B^c) = \mathbb{P}(X \in A) \end{split}$$

Beispiel: Medizinische Reihenuntersuchung

Eine Krankheit

- ▶ komme bei 2% der Bevölkerung vor ("Prävalenz 2%"),
- ein Test schlage bei 95% der Kranken an ("Sensitivität 95%"),
- ▶ aber auch bei 10% der Gesunden ("Spezifität 90%").

Eine zufällig gewählte Person wird mit positivem Resultat getestet.

Wie wahrscheinlich ist es, dass sie tatsächlich krank ist?

Modell: X =Testergebnis (S_X = {positiv, negativ}), Y =Gesundheitszustand (S_Y = {gesund, krank}) der Person Gesucht

$$\mathbb{P}(Y = \text{krank} \mid X = \text{positiv}) = ?$$

(Rechnung an der Tafel)

Beispiel: Medizinische Reihenuntersuchung

S.a. Gerd Gigerenzer, *Das Einmaleins der Skepsis*, Berlin Verlag, 2002, der auch einlädt, den Sachverhalt anschaulich anhand einer "Vierfelder-Tafel" bezogen auf eine Gesamtpopulation der Größe 1000 zu betrachten:

	krank	gesund	Σ
pos. getestet	19	98	117
neg. getestet	1	882	883
Σ	20	980	1000